Safety Distance to the front

ACSF IWG 19 ${ }^{\text {th }}$ meeting
September 2018, Paris

Korea Automobile Testing \& Research Institute

Safety Distance to the front

5.6.3.2.x Safety distance to the front

The distance to a vehicle in front is deemed to be critical when the distance the ACSF vehicle travels in $[x . x]$ seconds is greater than the distance to the vehicle in front. The critical distance shall be calculated using the following formula:
$S_{\text {Critical-Front }}=\boldsymbol{v}_{\text {ACSF }} \times t_{\text {front }}$
Where: $v_{A C S F}$: the actual speed of the ACSF vehicle $[\mathrm{m} / \mathrm{s}$]
$t_{\text {front }}$: time gap of [x.x] seconds between the ACSF vehicle and the lead vehicle

- Road traffic Act, paragraph 1 of Article 19, of Republic of Korea
"Driver shall control vehicle speed to prevent collision with other road user in front when another road user suddenly stopped"
- Considerations to determine Safety distance

$>$ Human driving data in following situation for acceptance of driver to clearance
> Braking distance to avoid collision in view of physics

Human Driving Data (125 drivers) - Motorway

- Steady-state following data collected from 125 driver test data and the linear regression
> Age : 25 ~ 69 years old / Male : Female = 70:55(persons)

> Human driver's steady following clearance could be well represented by a first-order regression as follows :
$C_{\text {following }}=\underset{\text { Time Gap }}{v_{x} \times \underset{\downarrow}{\downarrow}+c_{0}}$

Human Driving Data (125 drivers) - Motorway

$>$ Linear coefficient of the Time Gap

Index-Percentile	5%	Mean	95%
Linear coefficient [s]	0.7	1.4	2.3

Braking Distance

- Analysis of physical behavior for collision avoidance
> The way for collision avoidance : Braking
- Braking distance ($d_{\text {brake }}$)
$>$ A situation where velocity of front vehicle suddenly reaches zero, that is, successive collision, is considered
$>$ System delay $\left(t_{s y s}\right)=0.3 \mathrm{sec}$
$>$ Maximum deceleration $\left(a_{x, \max }\right)=-9 \mathrm{~m} / \mathrm{s}^{2}$

$$
d_{\text {brake }}=\left(t_{s y s}-v_{x} / 2 a_{x, \max }\right) \times v_{x}
$$

- Clearance by TG 2.3 sec is higher than braking distance in operating velocity ($0 \sim 130 \mathrm{~km} / \mathrm{h}$)

Conclusion

- Safety distance in front

$$
\begin{aligned}
& S_{\text {Critical-Front }}=v_{A C S F} \times t_{\text {front }} \\
& \text { Where: } v_{\text {ACSF }}: \text { the actual speed of the ACSF vehicle }[\mathrm{m} / \mathrm{s}] \\
& t_{\text {front }}: \text { time gap of }[\mathrm{x} . \mathrm{x}] \text { seconds between the ACSF vehicle and the lead vehicle }
\end{aligned}
$$

- Time gap of [x.x] seconds between the ACSF vehicle and the lead vehicle
$>$ Human driving data in following situation for acceptance of driver to clearance
> Braking distance to avoid collision in view of physics

$$
t_{\text {front }}=2.3 \mathrm{sec}(\text { proposed time gap })
$$

