

Effect of low temperature on pollutant emissions of hybrid vehicles: Preliminary studies for Low Temp. TF

R. Suarez-Bertoa and C. Astorga

Sustainable Transport Unit, Energy Transport & Climate

June 5th 2018 – EVE – Geneva

Current Regulation for cold temperature test

Regulation No. 83

Uniform provisions concerning the approval of vehicles with regard to the emission of pollutants according to engine fuel requirements

	T °C	Cycle	Road-Load	Vehicles	Pollutants
	-7.0 ±3	UDC	Determined at -7 °C or 10% reduction of coast-down time	P.I. including hybrids + information regarding NOx after-treatment for C.I.	HC, CO
* * * * * * * * *	-7.0 ±3	UDC	II	II	THC, CO, CO ₂
******** ******* ****** ****** *****	-7.0 ±1.7	FTP	Performing coast- down tests and calculating road-load coefficients at -7 °C	Otto-cycle and diesel including multi-fueled, alternative fueled, hybrid electric, and zero emission vehicles	NMHC, CO, CO ₂ *
	-6.7	CVS-75	11	Gasoline + information regarding NOx after-treatment for C.I.	СО
**	-7.0 ±3	Low+ Medium of WLTC	ш	P.I.; C.I.; hybrids	THC, CO, NOx

^{*} CO₂ is analysed and results used for the determination of the vehicle fuel economy. Cold temperature standards apply for CO and NMHC emissions.

Issues under revision by Low Temp. TF

- Cycle
 - Introduction of WLTC → NEDC obsolete
- Criteria pollutants
 - Are NOx, PN, PM, NMHC and CO₂ emissions affected by cold temperature?
- Applicability
 - Are emissions from diesel and electrified vehicles affected by cold T?

Experimental approach

- Two OVC-HEVs
- Tested following Type 1 procedure at 23 °C and -7 °C
- Road load at -7 °C as described in Type 6 Reg. 83 (i.e. 10% reduction of coast-down time)
- A/C set at 21 °C (U.S. 1066.710 for cold temperature testing)

Tested vehicles

	OVC-HEV1	OVC-HEV2
ICE	GDI	PFI
ICE Displacement (l.)	1.4	2.0
Drivetrain layout	Parallel	Parallel/Series
Battery Type	Li-lon	Li-lon
Nominal voltage (V)	345	300
Nominal capacity (kWh)	8.7	12
Emission category	Euro 6b	Euro 6b

Test option selected from GTR-15

OVC-HEV1 gaseous & particulate emissions

Higher emissions at lower T

• CO_2 : 30% higher

NOx: 7 times higher

• THC: 4 times higher

CO: 3 times higher

NH₃: 50% higher

PN: 4 times higher

OVC-HEV1 gaseous & particulate emissions

Emissions even higher when heating-ON

- CO_2 : 72% higher
- NOx: 9 times higher
- THC: 6 times higher
- CO: 4 times higher
- NH₃: 2.5 times higher
- PN: 5.3 times higher

OVC-HEV2 gaseous & particulate emissions

Higher emissions at lower T

 CO_2 : 60% higher

• THC: 7 times higher

• CO: 5 times higher

• NH₃: 2 times higher

PN: 4 times higher

NOx: 2 times lower

OVC-HEV2 gaseous & particulate emissions

Emissions when heating-ON?

• CO₂: 160% higher

• THC: 13% lower

• CO: 85% higher

• NH_3 : 70% higher

NOx: 20% lower

PN: 6.5 times lower

OVC-HEV2 gaseous & particulate emissions

OVC-HEV2 is a **PFI** \rightarrow EU PN emission standards are not applicable.

OVC-HEV2 cumulative emissions at -7°C

Total emissions during
CD can be **MUCH** higher
than during CS test

OVC-HEV2 cumulative at -7°C + heating ON

- Engine ignites from start during phase-1 allowing "controlled" heating of the after-treatment.
- This strategy result in an AER= 0km

All electric range

•OVC-HEV1 AER decreased 18% and OVC-HEV2 40% at -7°C compared to 23°C

•OVC-HEV2 AER was 0km at -7°C with heating-ON •OVC-HEV1 decreased 23% at -7°C with heating-ON

Compared to "pure ICE" vehicles at -7°C

- •OVC-HEV1 emissions are comparable to pure ICE Euro 6b gasoline LDV
 - NOx higher than the worst gasoline LDV studied

•OVC-HEV2 (PFI):

- THC and CO higher than pure ICE Euro 6b gasoline
- CO₂ slightly lower
- PN 1 order of magnitude higher than pure ICE Euro 6b gasoline vehicles

Data from diesel and gasoline vehicles can be found at Suarez-Bertoa and Astorga,

Impact of cold temperature on Euro 6 passenger car emissions,

Environmental Pollution. 234, 318-329. 2018

Summary

- Emissions from tested vehicles were strongly and negatively affected by cold ambient temperatures
 - Higher emissions at -7 °C than at 23 °C
- High emissions were observed during both CD and CS tests.
- Use of heating system further increased emissions in most cases.
- Emissions from OVC-HEV can be as high as those of "pure ICE".

Issues to be addressed for OVC-HEVs

- Are emissions affected at cold temperature? Yes
- Is CS test enough to fully address OVC-HEV emissions at cold T? No, CD test also needed
- Is there a negative impact on emissions if heating system is used? Yes
- Is it possible to follow Type 1-like procedure for OVC-HEVs at -7°C? Yes

Thank you

Any questions?

You can find me ricardo.suarez-bertoa@ec.europa.eu

