
CO Sensor Response Study NO & NOx Analyzer Validation

June 6, 2018

HOW TO MEASURE MULTIPLE ZONES

- Sensor Options Available
 - Passive sensors
 - Small and easy to use
 - · Rely on diffusion to reach sensor
 - Vacuum source sensors
 - Highest accuracy
 - Capable of multiplexing
- Measurement of driver breath level is required
 - Measuring levels throughout vehicle FOR DEVELOPMENT ONLY
 - Assist in discovering source with multiplexing

Both Options Are Capable Of Accurate Measurements Multiplexing System Under Development

CONVERSION FROM MASS/VOLUME TO PARTS/VOLUME

The molar volume of an ideal gas at 1 atmosphere of pressure:

22.414 L/mol at 0 °C, 24.465 L/mol at 25 °C.

The molar volume of an ideal gas at 100 kPa (average Detroit, Michigan, USA ground level air pressure)

22.710 L/mol at 0 °C, 24.789 L/mol at 25 °C.

Russian National Standard GOST R 33554-2015 Limits

	Concentration ppb (mol/mol)	Concentration ppm (mol/mol)	Concentration [µg/m³]	Concentration [mg/m ³]	Molecular Weight g/mol	Gas Molar Volume L/mol
Formaldehyde (HCHO)	41	0.041	50	0.05	30.03	24.79
Nitrogen Dioxide (NO2)	108	0.108	200	0.2	46.01	24.79
Nitric Oxide [NO]	331	0.331	400	0.4	30.01	24.79
Carbon Monoxide [CO]	4425	4.425	5000	5.0	28.01	24.79
Methane [CH4]	77275	77.275	50000	50.0	16.04	24.79

Calibration Standards Are Typically Blended By Concentration

SENSORS CONSIDERED

ToxiRAE Pro II

- Honeywell Company
- Electrochemical sensor
- Wireless
- Diffusion sampling
- 30+ hours of operation
- 1 Hz Logging capable
- 0-500 ppm range
- 1 ppm resolution

Horiba VA-5111

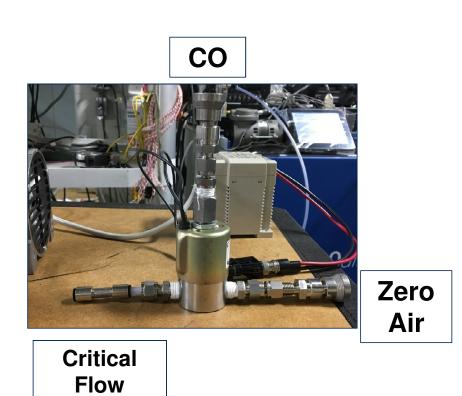
- NDIR Detector
- Vacuum sampling (up to 1.0 L/min)
- Computer controlled (TCP/IP)
- Logging speed variable
- 0-50 ppm and 0-500 ppm ranges
- 0.001 ppm resolution (displays 0.01)

Comparison Of Passive And Active Detectors

TEST PLAN

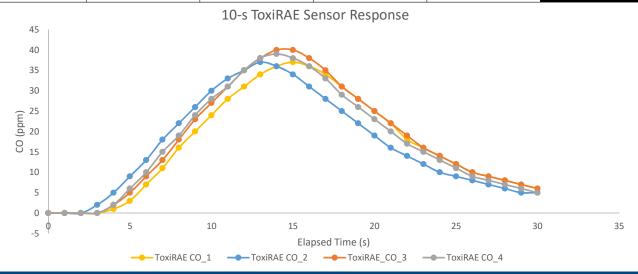
- Observe sensor response for 10, 20, and 30 second events
 - Solenoid switching (<< 1.0 second) between CO bottle and zero air bottle
- Test gas of 50 ppm CO in balance N_2 (actual NIST Bottle Label = 50.74 ppm)
- Two flow rates of 0.5 and 1.0 L/min were tested
- ToxiRAE: Response differences with and without filter

Test	Bottle (ppm)	System	Analyzer	Scan Rate	Flow Rate (L/min)	Vacuum (Y/N)	Filter (Y/N)
CO_1 Sensor_1	50	Horiba VA-5111	CO_1	1 Hz	0.5	N	
CO_1 Sensor_2	50	Horiba VA-5111	CO_1	1 Hz	1	N	
CO_1 Sensor_3	50	Horiba VA-5111	CO_1	1 Hz	0.5	Y	
CO_2 Sensor_1	50	Horiba VA-5111	CO_2	1 Hz	0.5	N	
CO_2 Sensor_2	50	Horiba VA-5111	CO_2	1 Hz	1	N	
CO_2 Sensor_3	50	Horiba VA-5111	CO_2	1 Hz	0.5	Y	
ToxiRAE CO_1	50	ToxiRAE Pro II	CO	1 Hz	0.5		Y
ToxiRAE CO_2	50	ToxiRAE Pro II	CO	1 Hz	1		Y
ToxiRAE_CO_3	50	ToxiRAE Pro II	CO	1 Hz	0.5		Ν
ToxiRAE CO_4	50	ToxiRAE Pro II	CO	1 Hz	1		N


TEST PLAN

ToxiRAE Inlet System

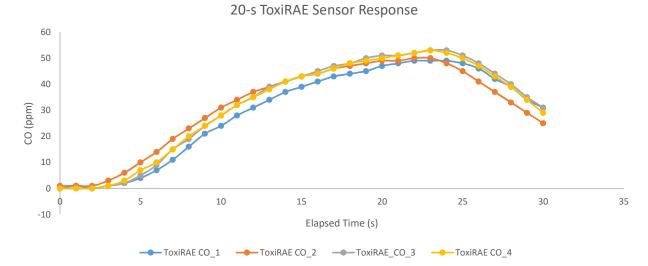
Solenoid Valve



Orifice

TOXIRAE 10 SECOND EVENT

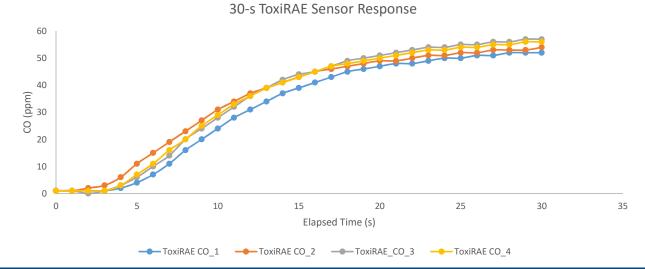
Test	Bottle (ppm)	System	Analyzer	Scan Rate	Flow Rate (L/min)	Vacuum (Y/N)	Filter (Y/N)
ToxiRAE CO_1	50	ToxiRAE Pro II	CO	1 Hz	0.5		Y
ToxiRAE CO_2	50	ToxiRAE Pro II	CO	1 Hz	1		Y
ToxiRAE_CO_3	50	ToxiRAE Pro II	CO	1 Hz	0.5		Ν
ToxiRAE CO 4	50	ToxiRAE Pro II	CO	1 Hz	1		Ν



No Filter Lead To Higher Response In Same Time Period

TOXIRAE 20 SECOND EVENT

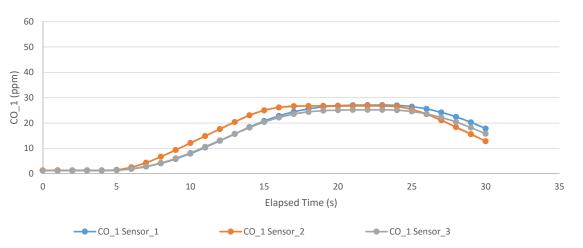
- .		. .		0 D.	Flow Rate		
Test	Bottle (ppm)	System	Analyzer	Scan Rate	(L/min)	Vacuum (Y/N)	Filter (Y/N)
ToxiRAE CO_1	50	ToxiRAE Pro II	CO	1 Hz	0.5		Y
ToxiRAE CO_2	50	ToxiRAE Pro II	CO	1 Hz	1		Y
ToxiRAE_CO_3	50	ToxiRAE Pro II	CO	1 Hz	0.5		Ν
ToxiRAE CO 4	50	ToxiRAE Pro II	CO	1 Hz	1		Ν



Similar Response; No Filter Read High (53 ppm)

TOXIRAE 30 SECOND EVENT

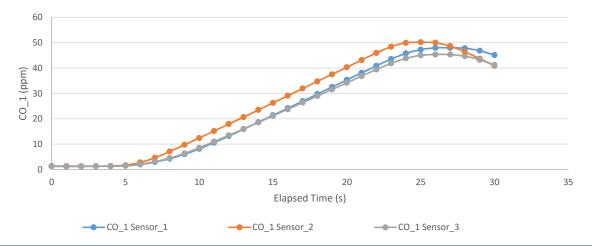
- .		. .		0 D.	Flow Rate		
Test	Bottle (ppm)	System	Analyzer	Scan Rate	(L/min)	Vacuum (Y/N)	Filter (Y/N)
ToxiRAE CO_1	50	ToxiRAE Pro II	CO	1 Hz	0.5		Y
ToxiRAE CO_2	50	ToxiRAE Pro II	CO	1 Hz	1		Y
ToxiRAE_CO_3	50	ToxiRAE Pro II	CO	1 Hz	0.5		Ν
ToxiRAE CO 4	50	ToxiRAE Pro II	CO	1 Hz	1		Ν



Similar Response; Filter Determined Peak Reading (Y: 54, N: 57)

HORIBA 10 SECOND EVENT (Analyzer 1)

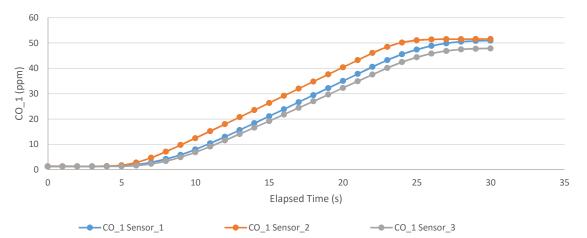
Test	Bottle (ppm)	System	Analyzer	Scan Rate	Flow Rate (L/min)	Vacuum (Y/N)	Filter (Y/N)
CO_1 Sensor_1	50	Horiba VA-5111	CO_1	1 Hz	0.5	N	
CO_1 Sensor_2	50	Horiba VA-5111	CO_1	1 Hz	1	N	
CO_1 Sensor_3	50	Horiba VA-5111	CO_1	1 Hz	0.5	Y	


10-s Horiba VA-5111

Similar Peak Reading; 1.0 L/min Slightly Faster Response

HORIBA 20 SECOND EVENT (Analyzer 1)

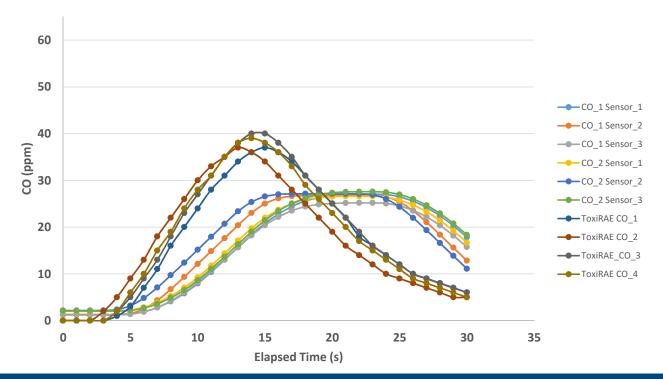
Test	Bottle (ppm)	System	Analyzer	Scan Rate	Flow Rate (L/min)	Vacuum (Y/N)	Filter (Y/N)
CO_1 Sensor_1	50	Horiba VA-5111	CO_1	1 Hz	0.5	N	
CO_1 Sensor_2	50	Horiba VA-5111	CO_1	1 Hz	1	Ν	
CO_1 Sensor_3	50	Horiba VA-5111	CO_1	1 Hz	0.5	Y	


20-s Horiba VA-5111

Vacuum Read Low (45 ppm); 1.0 L/min Slightly Faster Response

HORIBA 30 SECOND EVENT (Analyzer 1)

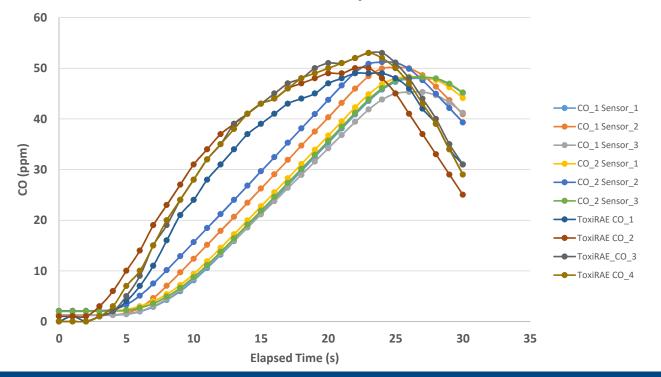
Test	Bottle (ppm)	System	Analyzer	Scan Rate	Flow Rate (L/min)	Vacuum (Y/N)	Filter (Y/N)
CO_1 Sensor_1	50	Horiba VA-5111	CO_1	1 Hz	0.5	N	
CO_1 Sensor_2	50	Horiba VA-5111	CO_1	1 Hz	1	N	
CO_1 Sensor_3	50	Horiba VA-5111	CO_1	1 Hz	0.5	Y	


30-s Horiba VA-5111

1.0 L/min Slightly Faster Response Low reading (47 ppm) Under Vacuum

OVERALLL 10 SECOND EVENT

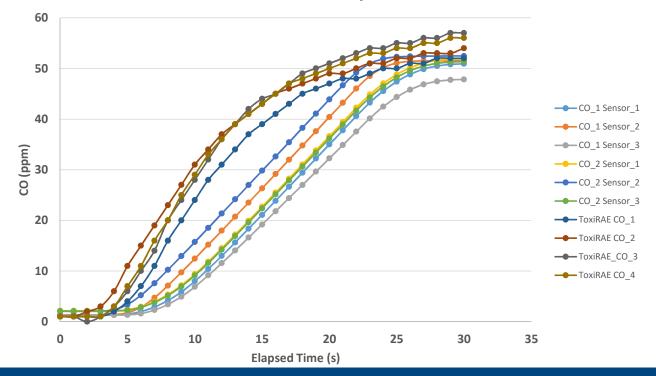
Overall Sensor Response: 10-s



ToxiRAE Had Faster Response

OVERALLL 20 SECOND EVENT

Overall Sensor Response: 20-s



ToxiRAE Had Faster Response; Also Read High (53 ppm)

OVERALLL 30 SECOND EVENT

Overall Sensor Response: 30-s

ToxiRAE Had Faster Response; Also Read High (57 ppm)

NEXT STEP - NEW TIME DELAY TEST EQUIPMENT

Tube In Picture Fills With Gas Then The Sensor Is Quickly Removed From Gas A Limit Switch Stops The Gas Supply And Turns On Vacuum

SPECIFICATIONS FOR ZERO GAS (AIR OR N2)

Constituent	Synthetic/Zero Air Purity	Zero Nitrogen Purity	Reference	
Nitrogen Oxides (NO _x)	Nitric Oxide (NO) ≤ 0.1 µmol/mol (0.1 ppm)	Nitric Oxide (NO) ≤ 0.1 μmol/mol (0.1 ppm)	US EPA	
Ammonia (NH ₃)	N/A	N/A	CFR 40 Part 86	
Nitrogen Oxides (NO _x)	≤ 0.02 µmol/mol (20 ppb)	≤ 0.02 µmol/mol (20 ppb)	US EPA	
Nitrous Oxide (N ₂ O)	≤ 0.02 µmol/mol (20 ppb)	≤ 0.02 µmol/mol (20 ppb)	CFR 40 Part	
Ammonia (NH ₃)	N/A	N/A	1065/1066	
Nitrogen Oxides (NO _x)	Nitric Oxide (NO) ≤ 0.1 µmol/mol (0.1 ppm)	Nitric Oxide (NO) ≤ 0.1 µmol/mol (100 ppb) Nitrogen Dioxide (NO ₂) < 0.1 µmol/mol (100 ppb)	WLTP &	
Nitrous Oxide (N ₂ O)	≤ 0.1 µmol/mol (0.1 ppm)	≤ 0.1 µmol/mol (100 ppb)	China 6	
Ammonia (NH ₃)	N/A	≤ 0.1 µmol/mol (100 ppb)		

This Table Is For Reference Only, Level Are Similar To Ambient Levels Similar Equipment Can Be Used For Table Measurements and VIAQ

CONVERSION FROM MASS/VOLUME TO PARTS/VOLUME

The molar volume of an ideal gas at 1 atmosphere of pressure:

22.414 L/mol at 0 °C, 24.465 L/mol at 25 °C.

The molar volume of an ideal gas at 100 kPa (average Detroit, Michigan, USA ground level air pressure)

22.710 L/mol at 0 °C, 24.789 L/mol at 25 °C.

Russian National Standard GOST R 33554-2015 Limits

	Concentration ppb (mol/mol)	Concentration ppm (mol/mol)	Concentration [µg/m³]	Concentration [mg/m ³]	Molecular Weight g/mol	Gas Molar Volume L/mol
Formaldehyde (HCHO)	41	0.041	50	0.05	30.03	24.79
Nitrogen Dioxide (NO2)	108	0.108	200	0.2	46.01	24.79
Nitric Oxide [NO]	331	0.331	400	0.4	30.01	24.79
Carbon Monoxide [CO]	4425	4.425	5000	5.0	28.01	24.79
Methane [CH4]	77275	77.275	50000	50.0	16.04	24.79

Calibration Standards Are Typically Labeled With Volume Concentration

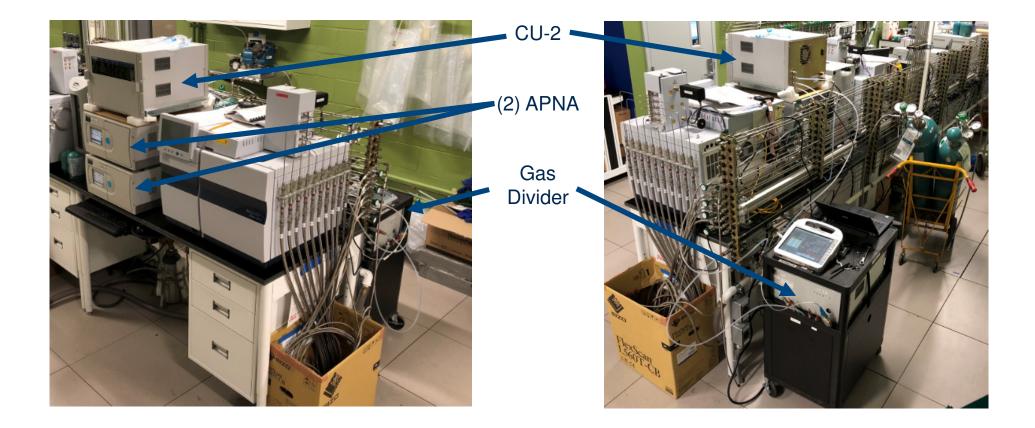
NOX AND NH3 ANALYZERS

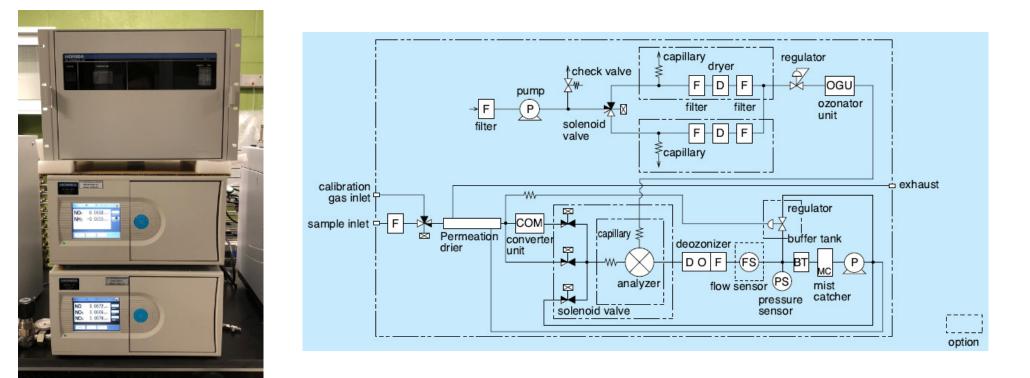
Horiba APNA-370

- Chemiluminescence
 Detector
- Ambient ozone generator
- Measures NO, NO₂, Total NO_X
- 0.1 up to 1.0 ppm ranges
- LOD of 0.5 ppb

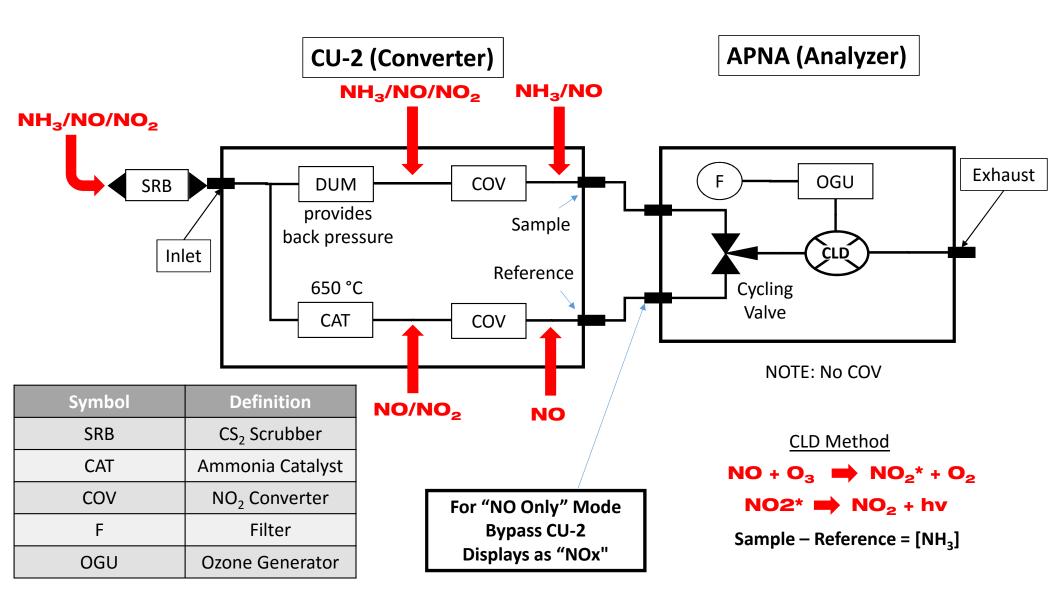
Horiba CU-2

- Ammonia converter
- Oxide catalyst for NH₃
- 90% conversion
- Up 10 ppm converted
- Works in conjunction with APNA-370

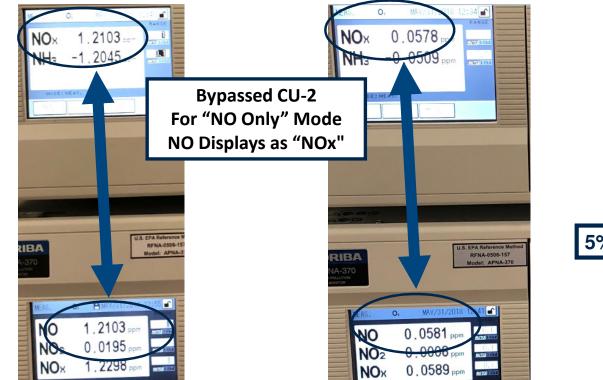

- MFC based dilution
- LabVIEW VI controlled
- Cutpoints (0%, 5% to 100%


Gas Divider Allows For Low Detection Limits To Be Achieved With High Accuracy CU-2 Is For Technical Reference Only, Not Part Of UN VIAQ Procedure

NO_X MEASUREMENT SETUP FRONT AND BACK



Setup of Horiba APNA Units



Received 1st (Lower) unit May 11th, 2nd (Upper) unit May 30th Diagram is for APNA (NO,NO₂,NOx), See next slide for (Upper) NH₃ Converter/APNA

READINGS – 100% AND 5% OF 1.255 PPM BOTTLE

100% values the same down to <0.1 ppb

Parts per Billion!!!

5% bottle values within 3 ppb

Two separate analyzers received weeks apart, factory calibration. Bottom unit was "ON" from May 11, 2018 to May 31, 2018

CERTIFICATE OF ANALYSIS Grade of Product: TRACEABILITY STANDARD

Graue of 110	uuct. Inne	1 III LEVELIN			
ylinder Number: XN0	NI99T3HAC086 21235B - Riverton (SAP) - N	IJ	Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:	82-400991268-1/ 247.1 CF 2215 PSIG 660 Nov 13, 2017	A
	Expirat	ion Date: N	lov 13, 2020		
This cylinder has been analytica with Airgas ISO procedures. Th	Ily certified as directly traceal ere are no significant impurit	ties which affect the othe	total analytical uncertainty as st e use of this calibration mixture. arwise noted. s Cylinder Below 100 psig.	ated below with a confidence All concentrations are on a	e level of 95%, in accordance volume/volume basis unless
	- Mar.	ANALYTI	CAL RESULTS		
Component Request				Total Relative Uncertainty	
NOx NITRIC OXIDE NITROGEN	1.000 PPM Balance		1.267 PPM 1.255 PPM		T Traceable T Traceable
Total oxides of nitrogen			1.267 PPM	For Refere	nce Only
Weight A.	C	ALIBRATI	ON STANDARDS		
Type Lot ID	Cylinder No	Concentrat	ion	Uncertainty	Expiration Date
SRM 2738-AL-26 SRM 2738-AL-26	AAL069215 AAL069215-NOX		ITRIC OXIDE/NITROGEN 0x/NITROGEN	+/- 1.4% +/- 1.4%	Sep 06, 2019 Sep 06, 2019
Instrument/Make/Model	A	ANALYTIC Analytical Pr	AL EQUIPMENT	Last Multipoint Cal	ibration
Thermo 42i-LS-NO-11237493	26	Chemiluminesc	ence	Oct 13, 2017	

Triad Data Available Upon Request

Thermo 42i-LS-NOx-1123749326

PERMANENT NOTES: COMPLIES WITH 40 CFR PART 1065.750

Oct 13, 2017

1.255 NO, 1% NIST Traceable

Chemiluminescence

Traceable Bottle Read (1.255 NO + 0.012 NO2 = 1.267 NOx)

Accuracy = NO @ 2.2% and Nox @ 1.2%, New Bottle and Factory Calibration

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: PRIMARY STANDARD

Part Number:	X02NI99P3HA0045	Reference Number:	122-401034134-1
Cylinder Number:	ND43443	Cylinder Volume:	247.1 CF
Laboratory:	124 - Durham (SAP) - NC	Cylinder Pressure:	2215 PSIG
Analysis Date:	Oct 25, 2017	Valve Outlet:	590
Lot Number:	122-401034134-1		

Primary Standard Gas Mixtures are traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS				
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty	
NITROUS OXIDE NITROGEN	0.2000 PPM Balance	0.1890 PPM	+/- 5%	

0.1890 PPM +-5%

WHAT HAPPENED? NEED TO RECHECK THE LABEL!

The bottle was Nitrous Oxide (N_2O). The good result, zero NOx Present.

27

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: PRIMARY STANDARD

Part Number: X05AI99P3HA0001 122-401036053-1 Reference Number: Cylinder Number: GN0001749 Cylinder Volume: 250.8 CF 2215 PSIG Laboratory: 124 - Durham (SAP) - NC Cylinder Pressure: Oct 26, 2017 Valve Outlet: Analysis Date: 590 Lot Number: 122-401036053-1

Primary Standard Gas Mixtures are traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS			
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty
NITROUS OXIDE	0.2000 PPM	0.1830 PPM	+/- 5%
METHANE CARBON MONOXIDE	0.5000 PPM 10.00 PPM	0.4694 PPM 9.976 PPM	+/- 5% +/- 2%
CARBON DIOXIDE	100.0 PPM Balance	99.51 PPM	+/- 1%

Same thing here Nitrous Oxide (N₂O) but includes other gases <u>There could be a blend that would work for all calibration compounds</u>

28

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: PRIMARY STANDARD

Part Number:	X02NI99P15A01H2	Reference Number:	82-401051019-1
Cylinder Number:	CC437476	Cylinder Volume:	144.3 Cubic Feet
Laboratory:	124 - Riverton (SAP) - NJ	Cylinder Pressure:	2015 PSIG
Analysis Date:	Dec 14, 2017	Valve Outlet:	660
Lot Number:	82-401051019-1		

Primary Standard Gas Mixtures are traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS			
Component	Req Conc Actual Concentration (Mole %)	Actual Concentration	Analytical
		Uncertainty	
NITRIC OXIDE NITROGEN	0.2000 PPM Balance	0.2200 PPM	+/- 5%
Total oxides of nitrogen	Balance	0.2200 PPM	For Reference Only

Second NO standard, 0.2200 ppm +-5%

Airgas Specialty Gases Airgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number: FORD ALLEN PARK TEST LAB X02NI99C3HA00B3 ND61384 124 - Plumsteadville - PA Nov 10, 2017 160-401016823-1 Expiration Date: Nov 10, 2018

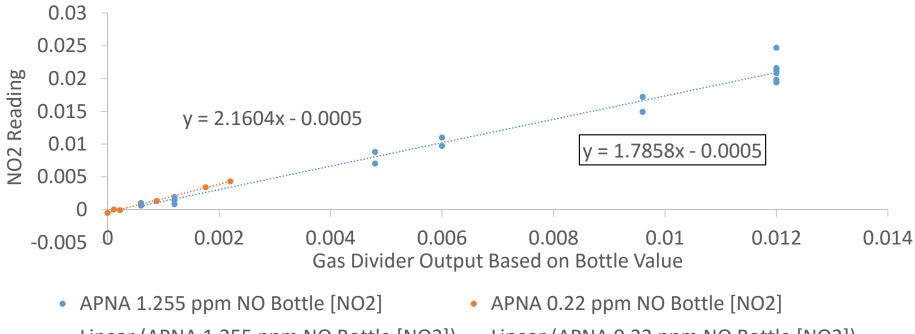
Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: 160-401016823-1 244 CF 2200 PSIG 705

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS				
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty	
AMMONIA NITROGEN	0.5000 PPM Balance	0.4830 PPM	+/- 5%	

0.4830 ppm +-5% Ammona (NH4)

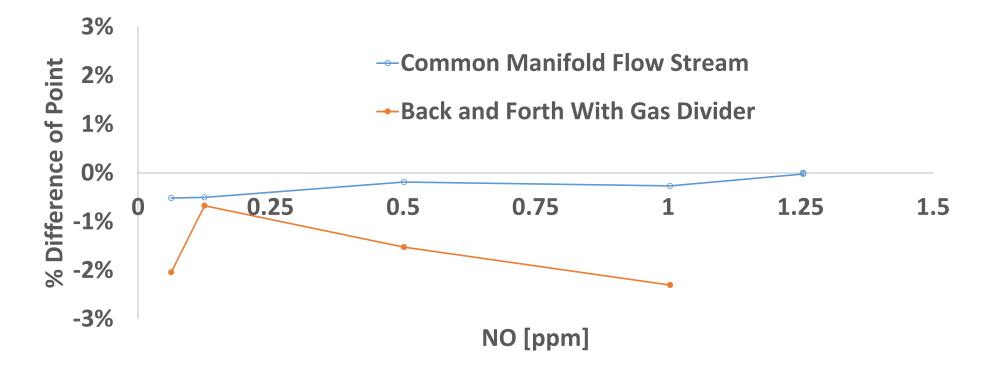
30


TEST PLAN

- Sample Standard "NO" Direct from New Bottle with Overflow
- Sample Standard "NO" With Gas Divider
 - Moving output of gas divider between analyzers (back and forth)
 - » This caused the MFCs in the gas divider to re-find flow value
 - Keeping the output of gas divider flowing to both analyzers at the same time
 - » This was a comparison between the two analyzers
- Sample Standard "NH₃" using the CU-2, NOT A TAILPIPE REQUIREMENT

This test plan was run over three days

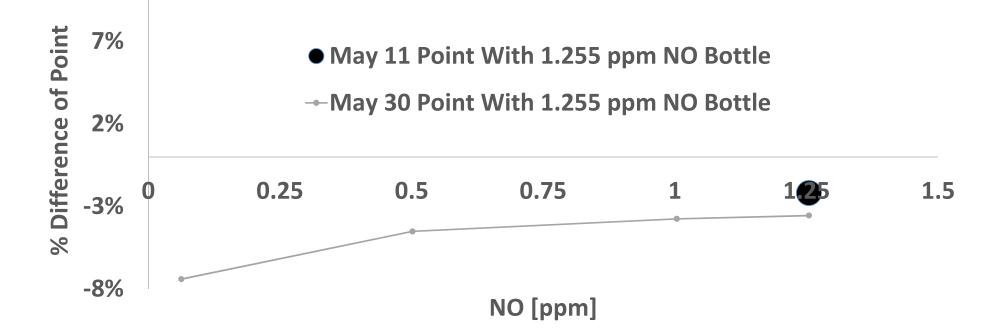
NO₂ READINGS FROM APNA



Linear (APNA 1.255 ppm NO Bottle [NO2]) Linear (APNA 0.22 ppm NO Bottle [NO2])

Based On Two Bottles The NO₂ Is Low, About 1% Of NO Label Concentration Data Showed Good Linear Response, Offset Likely Due To Bottle Label

TWO APNAS READING THE SAME GAS STREAM



One APNA Received May 11 Another on May 30, Both With Factory Calibration Disconnecting And Reconnecting The Gas Divider Is Not As Repeatable

33

% DIFFERENCE APNA VS. LABEL CONCENTRATIONS

There Was A Shift Over Time That Is Unexplained. The APNA Still Has The Factory Calibration And Was "ON" The Whole Time Between Readings.

34

Conclusions and Next Steps

- ToxiRAE
 - Passive inlet showed faster response due to gas forced onto sensor thus not consistent with a normal testing scenario
 - A more representative sampling system has been developed to mimic testing events
- Horiba
 - Instrument was not calibrated to negative pressure and lead to low readings when vacuum was applied, need to calibrate under testing conditions
 - Working with Horiba to change response time electronically, adjust averaging caluculaitons
- NOx measurements precautions to consider when testing
 - Ensuring no oxygen back flushing into analyte bottle can occur
 - NO concentration depletion control, should add process to insure calibration gas is stable
 - Could pump-down regulator to ensure no oxygen contamination
 - Periodic bottle mixing for could help low concentrations are stable and homogeneous
- NIST visit in September to discuss gas handling, bottle naming and calibration procedures
- Much more testing planed...

