

Electric Vehicle Battery Cell Testing

Dean D. MacNeil

Senior Research Officer
Energy, Mining and Environment – Ottawa
613-990-1769

Co-authors: NRC: Chae-Ho Yim, Steven Recoskie, Joel Perron, Brody

McLeod; Transport Canada: Samuel Pedroso, Martha Christenson;

Environment and Climate Change Canada: Kendelle Anstey

Presentation to the 28th UNECE EVE-GTR Meeting, Ottawa, October 2018

Introduction

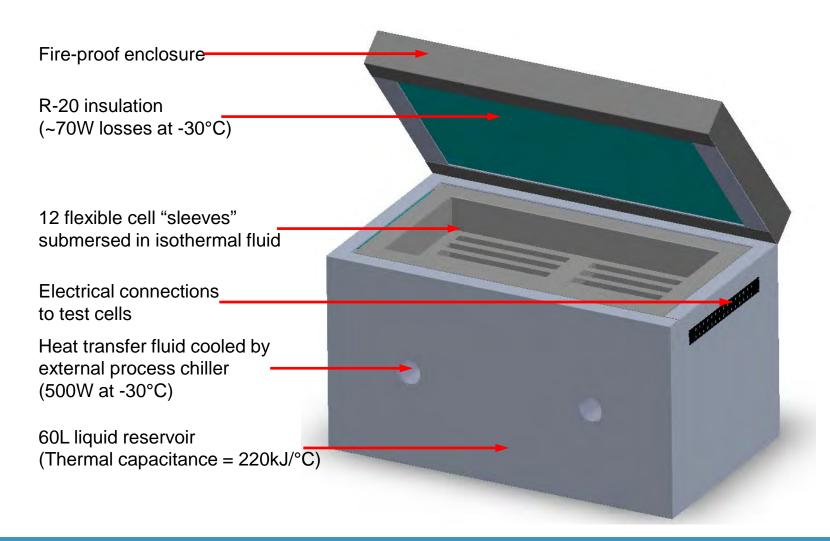
- Environment and Climate Change Canada (ECCC) and Transport Canada (TC) are leading Canada's efforts towards the UNECE-EVE.
- An area requiring further investigation is durability of EVs, especially as they concern extended low temperature operation.
- Performance losses of batteries with respect to temperature are well known, but durability studies are not well characterized.

Framework

- How does Battery Durability of an EV/PHEV over its lifetime affect predicted and extrapolated GHG emissions over their lifetime?
- What affects lifetime cold weather, hot weather, fast charging, poor thermal management, cell construction, ever changing material supplier choices, etc...
- Our previous work focused on 18650 cells and now the focus is on EV cells that have much higher capacity and lifetimes

Areas of Investigation 1 – EV Cell Analyses Test Matrix

Test Variable	Configurations								
Cell types	OEM 1 (2013)			OEM 2 (2013)			OEM 3 (2014)		
History*	"Fresh" and high mileage**			"fresh"			"Fresh" and high mileage***		
Cell format	Pouch			Prismatic			Pouch		
Rated Capacity (Ah)	15			21.5			33		
Voltage limits (V)	3.0 – 4.1			3.0 – 4.1			2.5 – 4.2		
Charge/discharge current (C-rate)	C/4	C/2	С	C/4	C/2	С	C/4	C/2	С
Charge/discharge current (A)	3.75	7.5	15	5.375	10.75	21.5	8.25	16.5	33
Environment Temperatures	For each configuration above								
(°C)	-15		5	5	15	25	35		ļ 5

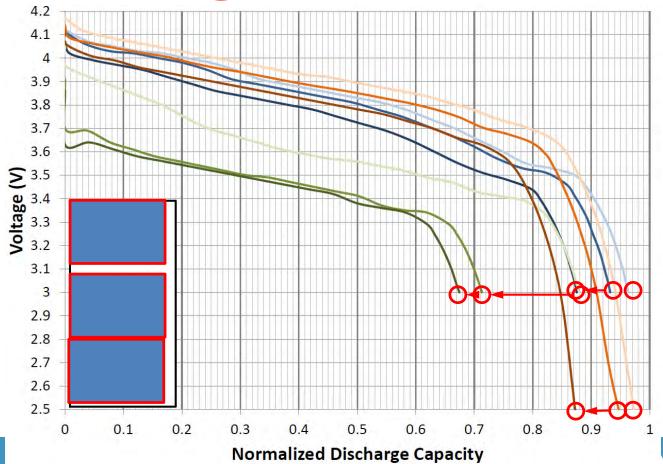

^{* &}quot;fresh" cells are extracted from EV battery packs that have less than 2000 accumulated kilometers

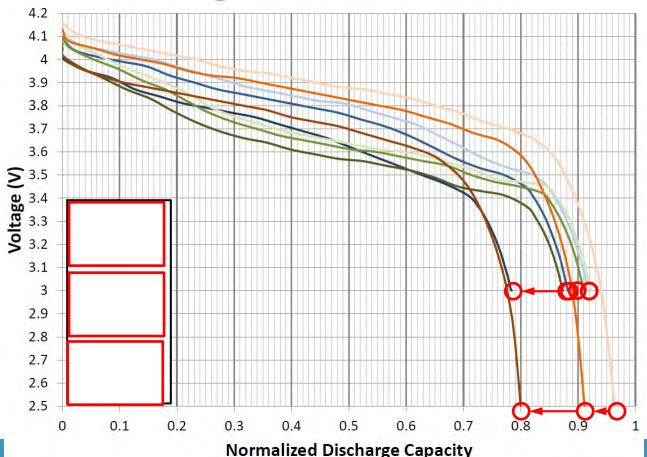
^{**} OEM 2 "high mileage" cells have been extracted from vehicles that have greater than 150,000 kilometers. One has higher "EV mileage" than the other *** After completion of ACLV2 vs DCFC study; cells will be tested here

Low temperature testing

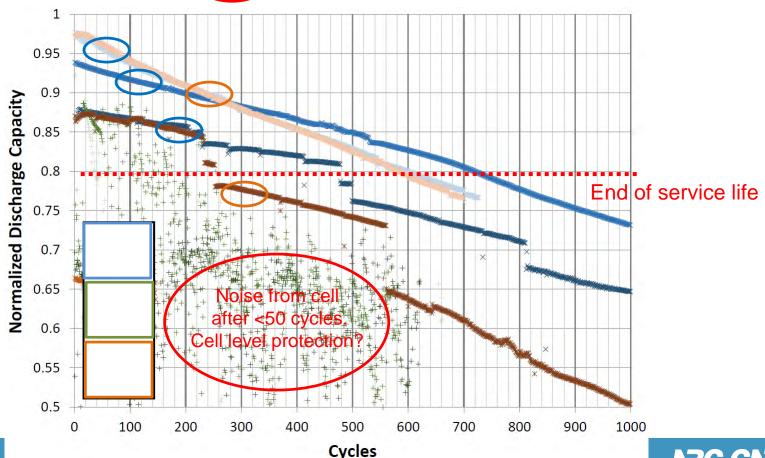
- Testing EV sized cells at low temperature present a number of issues especially if controlled temperature is required (it is!)
- Batteries absorb and give off heat (especially at high rates) and thus stable temperature readings are very difficult
- Extended testing at low temperature presents safety issues that have to be dealt with especially with the size of these EV cells
- NRC has built a new low temperature testing system that safely permits accurate EV cell level testing at low temperature.

Low temperature EV cell chambers


Low temperature EV cell chambers

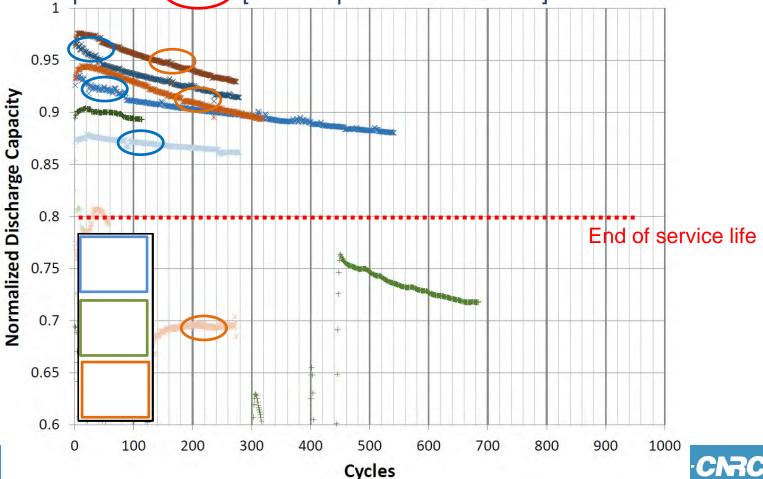

Areas of Investigation 1 – EV Cell Analyses Rate Performance 1

- Voltage vs. normalized discharge capacity for 3 cell types at 3 charge/discharge rates (the 20th cycle shown for each test)
- Environment temperature (45°C) [Cell temperature +/- 0.75°C]

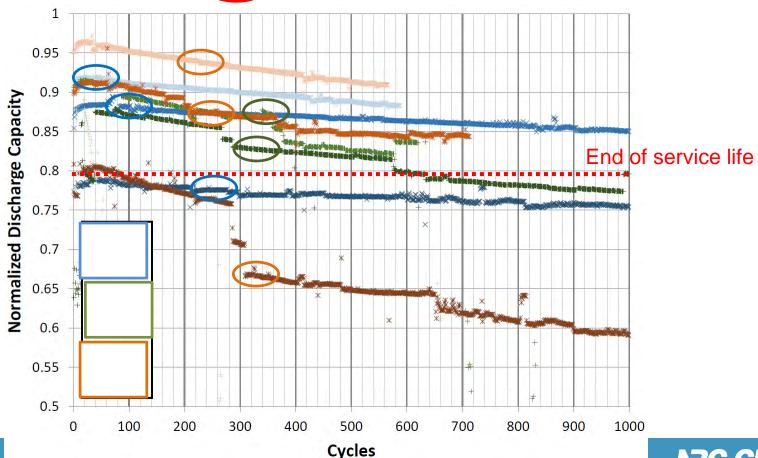


Areas of Investigation 1 – EV Cell Analyses Rate Performance 2

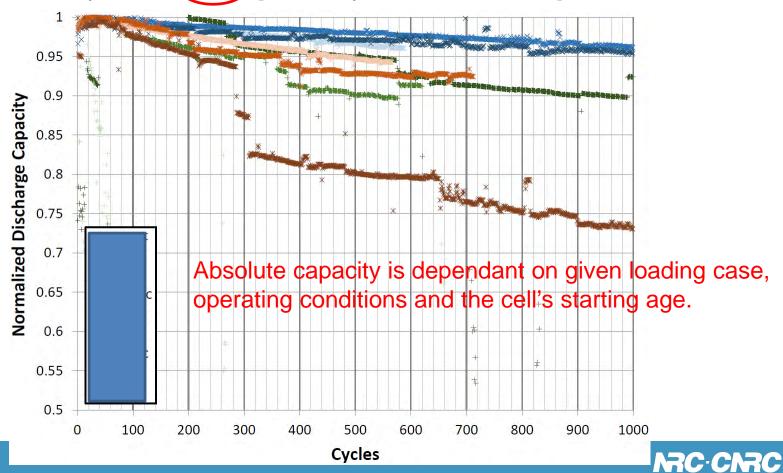
- Voltage vs. normalized discharge capacity for 3 cell types at 3 charge/discharge rates (the 20th cycle shown for each test)
- Environment temperature (25°C) [Cell temperature +/- 0.75°C]



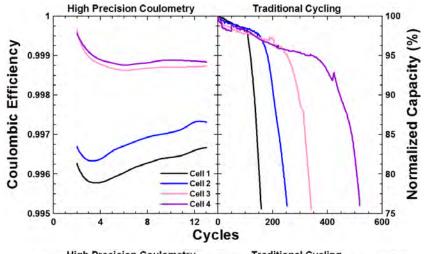
- Normalized discharge capacity vs. cycle number for 3 cell types at 3 charge/discharge rates (normalized by the cell's rated capacity)
- Environment temperature 45°C [Cell temperature +/- 0.75°C]



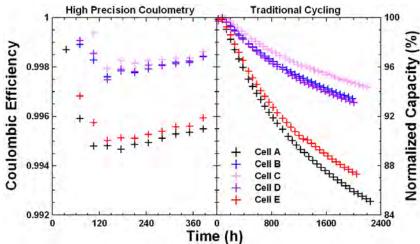
 Normalized discharge capacity vs. cycle number for 3 cell types at 3 charge/discharge rates (normalized by the cell's rated capacity)


Environment temperature 35°C [Cell temperature +/- 0.75°C]

- Normalized discharge capacity vs. cycle number for 3 cell types at 3 charge/discharge rates (normalized by the cell's rated capacity)
- Environment temperature 25°C [Cell temperature +/- 0.75°C]



- Normalized discharge capacity vs. cycle number for 3 cell types at 3 charge/discharge rates normalized by initial discharge capacity of each test
- Environment temperature (25°C) [Cell temperature +/- 0.75°C]

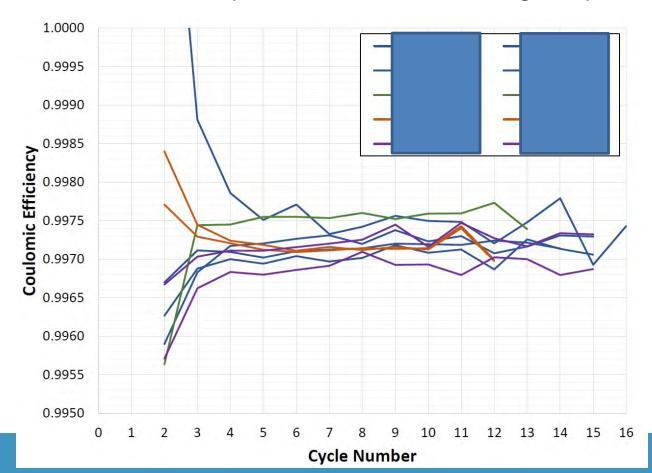


Methodology - High Precision Testing Sample

Lifetime prediction of cells that show only drastic failure

Lifetime prediction of cells that show gradual capacity loss

From Burns et. al. J. Electrochem. Soc. 160, A1451 (2013).


Methodology – High Precision Testing

- Comparison of High Precision cycling of EV cells to Standard battery cycling methods
- Can we estimate durability in a shorter timeframe
- Requires very stable temperature environments and low cycling rates
- Compare "fresh" and "high mileage"
 EV cells

Areas of Investigation 1 – EV Cell Analyses New Method for Durability 2

- CE measurements for 3 cell types at C/40 and environment temperature 45°C
- CE cycle variance depends on temperature stability
- CE cell-to-cell variance depends on cell manufacturing and pack uniformity

Areas of Investigation 1 – EV Cell Analyses New Method for Durability 3

Cell type	CE measurement at C/40 and 45°C	Cycles to 80% at at 1C and 45°C
OEM 1	0.997327	813
OEM 2	0.997560	? (CID)
OEM 3	0.997136	562

Areas of Investigation 1 – EV Cell Analyses Real World Comparison

- EV Cell Analysis from cells extracted from USED high mileage EVs
- The concept is to compare predicted performance with actual remaining performance
- Currently performing a comparative teardown and performance analysis

Areas of Investigation 2 – New Cell Chemistries

Opening positive end of 18650

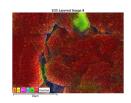
 Only positive side is opened up with mills to collect electrolytes

LG18650MJ1

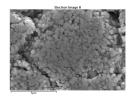
Opened 18650s

Inner materials, anode, cathode, and separator

Centrifugation of 18650

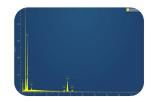

• To collect electrolytes

- 4000 rpm for 20 min
- Collected electrolytes are analyzed with GCMS


• Inner materials are separated, measured

Unrolled anode, cathode, and separator

SEM&EDX mapping of anode


SEM of cathode

Opening the negative end and cylinder

Material characterization

SEM and EDX

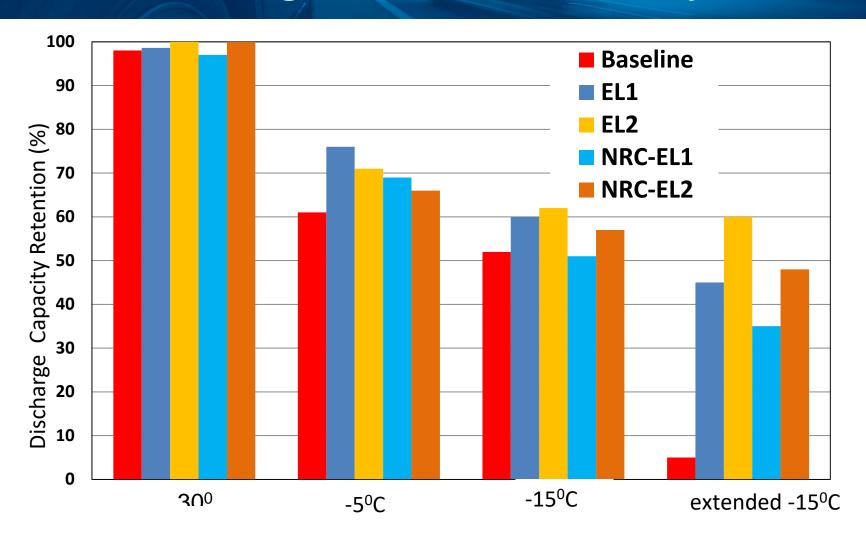
and analyzed

EDX of cathode

Areas of Investigation 2 – New Cell Chemistries

Company	Model	Cathode	Anode	Electrolyte
LG	ICR18650S3	NMC111	Graphite	EC:DMC, 3:7
	INR18650MJ1	NMC532	SiO _x /Graphite	EC:DMC:EMC, 3:6:1
	18650HG2	NMC532	SiO _x /Graphite	
Samsung	INR18650GA			
	INR18650-35E	NCA	Si/Graphite	EC:DMC:EMC, 2:6:2
Sanyo	NCR18650GA	NCA	SiO _x /Graphite	EC:DMC:EMC, 3:6:1
	NCR20700B			
Panasonic	NCR18650B	NCA	Graphite	EC:DMC:EMC, 2:7:1

 $NMCxyz - Li(Ni_{x/10}Mn_{y/10}Co_{z/10})O_2$


NCA - LiNiAlO₂

EC – Ethylene carbonate

DMC - Dimethyl carbonate

EMC – Ethyl methyl carbonate

Areas of Investigation 3 – New Electrolytes

Capacity dropped with T with EL2 showing best capacity retention

Acknowledgements

 The authors gratefully acknowledge financial support for this project from Environment and Climate Change Canada, Transport Canada through its ecoTECHNOLOGY for Vehicles Program and the National Research Council through its Vehicle Propulsion Technologies Program.

Thank you for your kind attention!

Any Questions, Suggestions or Comments