AEBS Car to Car(CCRm)

Average Deceleration and Peak Deceleration

AEBS IG 7th meeting
Nov. 2018, Geneva

Korea Automobile Testing \& Research Institute Automated Driving Research Office

Introduction

- KNCAP AEBS Test Protocol
- Implementation of KNCAP AEB
- C2C(CCRs - City)
- C2C(CCRm, CCRb - Interurban)
- C2P(Adult, Child)
- KNCAP AEB Plan
- GST/ C2B
- C2C(CCRm) Test result
- Average Deceleration $3.8 \mathrm{~m} / \mathrm{s} 2$ Data
- Peak Deceleration 6.4m/s2 Data
- Conclusion(Proposal)
- Deceleration requirement

KNCAP AEBS Test Protocol

- Implementation of KCNAP AEB
- Since 2017, AEBS testing was carried out as a test item for KNCAP
- Annually more than 9 test $\operatorname{car}(\sim 2018$, Total of 18 tested)
- Every year, KNCAP select this year's safety car based on test results(www.kncap.org)

KNCAP AEBS Test Protocol

- AEBS Test mode
- Car to Car(city)
- Car to Car(Interurban)
- Car to Pedestrian(Adult, Child)

KNCAP AEBS Test Protocol

- KNCAP AEB Plan
- Car to Bicycle(Cyclist, 2020~)
- Automated Vehicle test protocol(AEBS+ESF)
- Car to ??(night and obscure lighting, R\&D)

	BCNU	BCNO	BTLCN	BTRCF	BLD
Vehicle Speed	$10 \sim 60 \mathrm{kph}$	$20 \sim 40 \mathrm{kph}$	20 kph	10 kph	$20 \sim 60 \mathrm{kph}$
Cyclist Speed	15 kph				
Obstructio n	X	0	X	X	X
Hit Point	50%	50%	50%	50%	$20,50 \%$

* Night and obscure lighting(Euro NCAP)

V National Accident Data from Germany (2008-2010)

야간 충돌사고 시 보행자 상해 심각도 높은 것으로 나타남

C2C(CCRm) Test Result

- Average Deceleration $3.8 \mathrm{~m} / \mathrm{s} 2$
- Regarding the deceleration requirement mentioned in the last $6^{\text {th }}$ meeting
- Vehicles that do not meet the average deceleration value of $3.8 \mathrm{~m} / \mathrm{s} 2$ only occurred below D Seg. only at low speed(30km/h)

Vehicle Configuration

- However, Not all the test vehicles collide
※ The above test results are calculated by averaging test vehicles.

C2C(CCRm) Test Result

- Average Deceleration $3.8 \mathrm{~m} / \mathrm{s} 2$
- Vehicle with Vision sensor only had lower average deceleration than vehicles with other sensors And the average deceleration in the entire speed range
- However, Not all the test vehicles collide
- Although the average deceleration may be low depending on the brake capacity, it is expected to be independent of the AEBS requirements

C2C(CCRm) Test Result

- Reduction rate by test speed
- As the test speed increases, Subject Vehicle shall begin braking in advance and shall not collide with the Target Vehicle. However cars equipped with only vision experienced a deceleration of more than 70% in all speed zones

Ministry of Land,
Infrastructure and Transport
Korea Automobile Testing \&
Research Institute

CRCTESt Result

- Peak deceleration $6.43 \mathrm{~m} / \mathrm{s} 2$
- All test vehicles met the peak deceleration value of $6.43 \mathrm{~m} / \mathrm{s} 2$
- However, if $6.43 \mathrm{~m} / \mathrm{s} 2$ is not satisfied, a collision has occurred

Vehicle to Vehicle AEBS			Target Vehicle Requirement	Vehicle Name (Peak Deceleration(m / ss))								
Test Mode	Subject vehicle Speed (km/h)	Targer Vehicle Speed (km/h)		<A> Vision(M) Radar	$\begin{gathered} \langle\mathrm{B}\rangle \\ \text { Vision(M) } \\ \text { Radar } \end{gathered}$	<C> Radar	$\begin{gathered} \text { <D> } \\ \text { Vision(S) } \\ \text { Radar } \end{gathered}$	<E> Vision(S) Radar	$<F\rangle$ Vision(M) Radar	<G> Vision(M) Radar	<H> Vision(M)	<I> Vision(M) Radar
CCRs	10	0	-	8.60	10.50	8.00	10.00	6.80	9.00	10.00	6.00	8.50
CCRs	20	0	-	8.50	11.50	8.50	8.50	6.80	10.00	9.50	9.40	7.00
CCRs	30	0	-	8.20	11.00	9.40	9.40	7.80	10.00	10.00	9.00	7.50
CCRs	40	0	-	8.00	11.00	10.50	11.50	9.50	10.00	9.50	8.00	8.00
CCRs	50	0	-	8.40	11.00	10.50	11.00	8.00	10.00	9.50	8.00	8.00
CCRs Average Peak decel				8.34	11.00	9.38	10.08	7.78	9.80	9.70	8.08	7.80
CCRm	30	20	-	4.50	12.00	9.50	12.00	7.50	11.00	8.00	9.50	6.50
CCRm	40	20	-	7.40	11.50	9.10	12.00	7.80	11.00	9.00	10.00	8.00
CCRm	50	20	-	7.30	10.50	10.40	11.00	7.60	11.00	9.00	10.50	7.00
CCRm	60	20	-	6.80	10.40	11.00	11.50	9.00	10.50	9.00	10.00	7.50
CCRm	70	20	-	7.00	10.50	10.90	12.00	8.20	11.00	9.50	-	8.00
CCRm Average Peak decel				6.60	10.98	10.18	11.70	8.02	10.90	8.90	10.00	7.40
CCRb	50	50	$12 \mathrm{~m}(0.2 \mathrm{~g})$	6.50	10.50	11.20	11.00	8.00	9.00	9.50	10.00	8.50
CCRb	50	50	$12 \mathrm{~m}(0.6 \mathrm{~g})$	8.00	11.00	11.50	10.50	11.00	9.50	9.00	10.00	9.00
CCRb	50	50	$40 \mathrm{~m}(0.2 \mathrm{~g})$	7.00	11.00	9.30	11.00	9.50	9.00	10.50	10.00	9.00
CCRb	50	50	$40 \mathrm{~m}(0.6 \mathrm{~g})$	7.80	11.50	10.50	11.00	10.50	9.00	9.00	10.00	9.00
CCRb Average Peak decel				7.33	11.00	10.63	10.88	9.75	9.13	9.50	10.00	8.88

Conclusion

- Average deceleration $3.80 \mathrm{~m} / \mathrm{s} 2$
- When KNCAP test results are analyzed, the average deceleration occurred above $3.8 \mathrm{~m} / \mathrm{s} 2$ overall, but some vehicles were not satisfied at low speeds
- The requirement value of the average deceleration shall be specified
(Because Test results that average deceleration value was low had collision with target car)
- Average deceleration $3.8 \mathrm{~m} / \mathrm{s} 2$ (AEBS IWG) or $3.7 \mathrm{~m} / \mathrm{s} 2$ (ACSF IWG - EM requirement)
- Peak deceleration $6.43 \mathrm{~m} / \mathrm{s} 2$
- Peak deceleration can be satisfied if the service brake requirement of UN R13-H is met
- If the peak deceleration value is less than $6.43 \mathrm{~m} / \mathrm{s} 2$, it is dangerous to collide

