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Abstract 

The Joint Research Centre (JRC) of the European Commission organised a workshop 

under the umbrella of its Exploratory Research Programme1. The Workshop titled: 'Safer 

Li-ion batteries by preventing thermal propagation?' was held at the Directorate C-

Energy, Transport and Climate in Petten on 8-9 March 2018. The workshop offered a 

platform where leading experts exchanged ideas and research efforts on thermal 

propagation testing, new methodologies, policy and standardisation issues and brain-

stormed on the potential impact of preventing thermal propagation on the safety testing 

landscape. The input of some of the major stakeholders from industry and research to 

this event proved very participative on the relevant technical issues discussed, and on 

the identification of improvements of existing testing methodologies and mitigation 

strategies. This technical report presents a summary of the main discussion points, 

conclusions and outcomes of the workshop as agreed by their presenters. 

                                           
1 To be developed as one of the pillars of JRC's work, see JRC Strategy 2030, 2016, 
https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-strategy-2030_en.pdf 

https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-strategy-2030_en.pdf
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Foreword 

The intention of this 2 day workshop 'Safer Li-ion batteries by preventing thermal 

propagation?' was to bring together leading experts not only to discuss the current state-

of-the-art of thermal propagation testing, but also to brain-storm on the potential impact 

of preventing thermal propagation on the safety testing landscape. 

The workshop was conceptualised by the organisers (Vanesa Ruiz and Andreas Pfrang) 

both in terms of defining the content of the sessions and contacting the experts.  

The workshop was structured in the following technical sessions: 

Session 1. Thermal runaway: mechanisms and influencing factors 

Session 2. Thermal propagation 

Session 3. Thermal runaway initiation methods, fit-for-purpose testing related 

to external and internal abuse triggers 

Session 4. Safety strategies; methods for detecting, mitigating and preventing 

thermal propagation; anti-cascading strategies 

Session 5. Cost and performance penalty of mitigating thermal propagation 

Session 6. Impact of avoiding thermal propagation on the current safety 

testing landscape 

At the end of each session, moderated discussions led by the chairmen of each session 

took place. Rapporteurs prepared a summary of each session and gave support to the 

chairmen who presented a summary of their allocated session during the conclusions 

session.  

Workshop participants benefited from the extended experience of known leading 

scientists, battery design engineers and safety testing experts. Active discussions took 

place from the interactive group gathered in the workshop. Participants were invited to 

share knowledge, information and experience.  

The discussions and conclusions of the workshop are summarised in this report which will 

be publicly disseminated to interested stakeholders. 

The presentations of the workshop are available online and can be downloaded from: 

https://ec.europa.eu/jrc/en/event/workshop/workshop-safer-li-ion-batteries-preventing-

thermal-propagation 

https://ec.europa.eu/jrc/en/event/workshop/workshop-safer-li-ion-batteries-preventing-thermal-propagation
https://ec.europa.eu/jrc/en/event/workshop/workshop-safer-li-ion-batteries-preventing-thermal-propagation
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Problem statement 

Electrical energy storage plays a crucial role in ensuring mobility and reliable energy 

supply in the future. Within this context, the 'Communication on Accelerating Clean 

Energy Innovation' released by the European Commission identifies safer and higher-

performing batteries as key requirements for a shift towards full electro-mobility and 

increased energy storage capacities in homes [1].  

Li-ion technology is considered as one of the solutions for large scale applications (e.g. 

electrification of transport, smart grids) as well as for small scale applications (e.g. 

portable devices). As we move from single cells to modules and packs (from a few Ah up 

to several hundreds of Ah), failure modes in Li-ion batteries (LIBs) become increasingly 

complex and their potential damage can be substantial (e.g. vehicle burn down) and 

difficult to deal with. Failure modes due to thermal, mechanical or electrical abuse may 

develop into thermal runaway (TR) [2].  

Li-ion cells can be operated safely within a limited window of parameters (e.g. 

temperature, voltage, charging and discharging currents). Crossing these limits typically 

leads to a higher cell temperature that-once a certain onset temperature is exceeded-

rapidly rises, leading to thermal runaway which is accompanied by hazardous effects 

(e.g. pressure increase, gas and particulate emission, fire or even explosion). Thermal 

runaway occurs when the heat generated by internal cell failure, abuse or misuse cannot 

be dissipated fast enough [3]. Cascading of TR through an entire battery (which can be 

composed of numerous electrochemical cells, typically from several dozen to several 

thousand), defined as thermal propagation (TP), can lead to severe consequences: large 

heat/gas release (roughly a few 100 kJ/Ah and few l/Ah, respectively [4, 5]), associated 

hazardous events (e.g. emission of toxic materials [5, 6], pressure build-up and release, 

electrolyte leakage, fire, explosion) and financial losses (e.g. property damage).  

Risks associated with simultaneous thermal runaways in multiple cells occurring under 

non-normal operating conditions (e.g. energetic collisions, external fire exposure) can be 

mitigated by battery design. However, the case of a spontaneous single cell thermal 

runaway reaction, under otherwise normal operating conditions, can be more hazardous 

as it might happen without warning, without an obvious cause and after a considerable 

service time (i.e. field failures as identified in references [7, 8]). The fact that cells 

involved in field failures generally have passed the testing required by safety standards 

indicates that these events require a special attention [7]. These failures, which have 

been attributed to cell manufacturing contaminants or cell flaws, are not common and 

are difficult to detect, despite extensive efforts carried out by battery manufacturers. 

There can be two approaches which may be considered to tackle this situation; one is the 

development of battery chemistries and/or battery designs that do not result in critical 

events, while a second approach is to assume that a TR may eventually occur, and to 

implement safety features that focus on detecting and suppressing cell-to-cell or module-

to-module propagation. Reliable prevention measures of thermal propagation could 

potentially result in reduced battery weight, improved performance and ultimately 

reduced cost at sufficient level of safety.  

TR testing is covered by numerous research articles [9-14], and it is required in a few 

standards [15-19]. Also a number of standards cover thermal propagation testing dealing 

with various battery applications (e.g. electric vehicles [20-22], industrial [21], aircraft 

installations [23], stationary [18]).  

Another aspect to mention is that batteries are typically tested when they are fresh/new, 

i.e. ageing effects are not accounted for. The ageing influence on the safety 

characteristics is not yet well understood [24]. 

Few TR tests try to simulate internally driven failures (Internal short circuit, ISC), such as 

the nickel particle method [15] or the wax material method [25]. Worryingly, the 

suitability of these tests to represent field failures remains disputed [19, 26]. Also other 

safety tests carried out in a controlled environment (e.g. heat, overcharge) do not 
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necessarily replicate the conditions under which safety incidents have been reported to 

occur in the field [7] and can with difficulty satisfy the needs for all types of batteries 

(e.g. cell geometries, cell assemblies) and designs. The development of innovative tests 

to adequately simulate field failures is extremely challenging; the potential trigger 

methods should not, in principle, introduce extra energy apart from that inherent in the 

tested cell and should ideally only involve few electrode layers. Additionally, the 

manipulation of the device to be tested should be minimised. 

Furthermore the selection of the cell to be initiated is not straightforward: while a cell in 

the centre of the battery could in certain cases represent the worst case with respect to 

heat removal, it may not be easily accessible e.g. by nail-penetration. Finally, there are 

issues with repeatability and reproducibility, as thermal propagation depends on a 

delicate balance between heat generation and heat removal. A slight change in the test 

conditions might lead to cell to cell propagation in some circumstances, but not in others. 

Full module or even pack level testing contributes to improve understanding of 

propagation useful to battery developers, product designers and OEMs. However, up to 

now, no scientifically sound testing method has been developed for regulatory purposes 

(e.g. vehicle certification). Upcoming developments worth mentioning include the 

introduction of a thermal propagation requirement into the Global Technical Regulation 

on Electric Vehicle Safety (GTR-EVS) [27], and into a SAE standard for lithium metal and 

lithium ion batteries (LIBs) as cargo on aircraft [28]. 
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Session 1. Thermal runaway: mechanisms and influencing factors 

Thermal runaway (TR), which is the most safety-critical failure mode of battery cells, can 

be defined as an uncontrolled increase in the temperature of a rechargeable energy 

storage system (RESS) driven by internal exothermic processes. However, there is no 

agreed definition and various options appear in different standards and regulations (UL 

2580 [29], UNECE GTR-EVS Phase I [27]). As discussed by the participants to the 

workshop there was a general agreement that there is a need for a harmonised TR 

definition.  

A TR event is potentially of a hazardous nature (with associated fire, explosion, gas 

evolution); the earlier it is detected, the earlier safety measures can be taken. Overall 

there is a need for developing accurate and fast early detection tools.  

Figure 1 shows an indicative typical evolution of a TR reaction and associated 

physicochemical processes over time. The processes start when the limit of thermal 

stability of the chemistry within a battery is exceeded. Then, a chain of chemical 

reactions start, involving electrolyte evaporation and gas evolution which eventually lead 

to melting of shutdown separator (e.g. PE  130 °C), triggering of the cell burst disk, and 

subsequent reactions: electrolyte/binder decomposition, cathode active material 

degradation, amongst other reactions.  

 

Figure 1. Typical evolution of thermal runaway in a Li-ion cell. The scales are given in arbitrary 
units and the reactions shown separately may occur simultaneously. Reprint from [30] 

As a consequence of TR, cell voltage drops and overall cell temperature increases. Heat is 

generated by several sources: intrinsic electrical power, decomposition of solid electrolyte 

interphase (SEI) ( 150 J/g), decomposition of electrolyte ( 250 J/g), decomposition of 

anode ( 350 J/g), reaction of oxygen (from cathode) with the electrolyte solvents ( 

450-600 J/g). Many factors affect the amount of heat released: cell type, initiation 

method, air/oxygen availability, heating rate, ignition/no-ignition, cell status 

(ageing/SOH), SOC, battery design (plastics, cables, electronics, etc.). Also the method 

used to analyse the event can have an influence (e.g. DSC and ARC can only assess a 

part of the heat released upon TR).   

The extent (e.g. maximum temperature, rate of heat generation vs. rate of heat 

dissipation) of the thermal event is also dependent on several factors: short circuit 
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resistance, internal cell resistance, and cell thermal environment amongst others. Also, in 

typical Li-ion cells, reaching the stage of anode decomposition can be determinant for the 

severity of the event.  

The "triangle of fire" components are present in the battery constituents itself: oxygen 

(present in the cathode materials), combustible substances (electrolyte, separator, anode 

material) and heat (external or internal to the battery). Therefore fire events are likely to 

occur upon TR. A controversial aspect of TR testing relates to the fact that some 

standards require the presence of a spark source during the experiment (e.g. UL 2580 

and SAND 2005-3123 [29, 31]), and others not (e.g. ISO 12405-3 [32]). Therefore, the 

"no fire" pass/fail condition is tested in a completely difference environment. On the one 

hand, spark sources are additional risk scenarios and impose additional technical hurdles, 

and on the other hand, in case of an abusive condition it is likely that spark sources are 

present in the vicinity of the event. 

There are a variety of causes that can trigger battery thermal runaway: overcharge, 

overheat, short circuit, etc. Failures that can lead to thermal runaway can be classified 

into external to the cell (e.g. external short circuit, external fire, overcharge, crush) or 

internal to the cell (e.g. Li dendrites, Cu dendrites, manufacturing defects). From the 

possible scenarios, the presence of manufacturing defects is by far the most worrying. In 

fact, these cannot be predicted, nor intercepted by current battery management systems 

(BMS).   

The European Council for Automotive (EUCAR) sets hazard levels for battery failure [31] 

which are widely used in automotive industry during the battery design phase. In this 

context a test is considered failed at hazard levels  5 (fire or flame, rupture or 

explosion). Such cells are not used in automotive applications, but rather sold by cell 

manufactures for small scale applications.  

Several participants raised the concern around the use of EUCAR hazard levels as 

descriptions of levels need improvement and updating. A more elaborate description of 

each level is advisable in order to avoid misinterpretations.  

Some other issues raised in the session in relation to the EUCAR hazard levels:  

 Qualitative evaluation, open to interpretation in some cases 

 Boundary conditions are not defined 

 Acceptance criteria are not clearly defined 

 Definition of fire is unclear 

 Not relevant to stationary storage applications  

As an alternative, a proposed approach for quantitative analysis of cell safety behaviour 

was presented2 based on: total heat released, the amount and nature of the gases 

released, precise temperature vs. time profiles, and reaction times.  

Based on experimental evidences of measurements carried out for a 53 Ah 

graphite/nickel manganese cobalt oxide (NMC) cell in an autoclave chamber2, a close to 

linear correlation between the weight loss of the Li-ion cell after the thermal event and 

the heat transfer to the metal block surrounding the cell was found. In general it was 

observed that the weight loss increases with the energy density of the cell under 

investigation, although there can be variations due to for example the cell format, design 

of the rupture disk and the amount of electrolyte. This approach allows calculating the 

total amount of chemical energy contained in a cell (abuse condition). With the 

assumption that at zero weight loss there is no heat released (ideal case where the heat 

is quantitatively transferred to the metal block), a total heat of 21 kJ/Ah is calculated for 

the case investigated2. Electric energy (normal condition) for a 3.65 V cell having a 

capacity of 1 Ah results in 13 kJ. This results in an energy-ratio between Echemical/Eelectric of 

1.6. The energy-ratio could be useful in assessing the severity of a potential safety 

                                           
2 S. Scharner (BMW) presentation: "Quantitative safety characterization of Li-ion cells". Online access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/quantitative-safety-characterization-of-li-ion-cells.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/quantitative-safety-characterization-of-li-ion-cells.pdf
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event. As a drawback of this method, it can be mentioned that the ejected material 

transports heat into the autoclave chamber which is not measured and it is not 

accounted for in the total amount of heat production. 

The heat released upon TR can also be obtained by using a Heat Distribution Calorimeter3 

designed for single cylindrical cells. This device allows decoupling the heat generated 

within the cell casing and the heat generated by the ejected material (e.g. jellyroll). The 

device is X-ray transparent which allows for in-situ high X-ray speed imaging. In general, 

it was found that higher energy cells released more heat and that over 60 % of that heat 

generated during TR originates from ejected material3.   

Another parameter of great importance when studying a thermal runaway is the reaction 

time. From the gas pressure curve inside the autoclave chamber (see Figure 2), such 

reaction time can be calculated taking into account the starting time of the reaction 

(voltage drop accompanied by sharp increase in the cell pressure), the maximum gas 

pressure reached and the following equation: (pmax-pEQL)/2, where pEQL is the gas 

pressure at equilibrium and pmax
 is the maximum gas pressure2.   

 

Figure 2. Schematic representation of a pressure curve inside the autoclave chamber during a 
thermal runaway event as presented by 2  

The total amount of gas released can be calculated from the equation of ideal gases 

taking into account the gas pressure at temperature equilibrium p (Figure 2)2. The 

amount of gas under standard conditions of pressure and temperature (1013 hPa; 25 °C) 

is around 1-2 l/Ah (which correlates to around 14 % cell weight loss). In general, the 

maximum gas volume emitted (without combustion) during TR of various types of Li-ion 

chemistries and various types of abuse is roughly linearly proportional to the cell size4.  

Additionally, based on experimental evidences2, it was found a close to linear relationship 

between the energy density of the cell (Wh/kg) and the maximum cell surface 

temperature upon TR, whereas the heat flux (W/cm2) averaged over the reaction time 

                                           
3 E. Darcy (NASA-Johnson Space Center Houston) presentation: "Lessons learned for achieving passive thermal 
runaway propagation resistant (PPR) designs for spacecraft batteries". Online access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/eric-darcy-nasa-lessons-learned-passive-thermal-runaway-
propagation-resistant-designs-spacecraft-batteries.pdf  
4 C. Chanson (RECHARGE) presentation: "Characterize the lithium batteries thermal run-away reaction". Online 
access: https://ec.europa.eu/jrc/sites/jrcsh/files/claude-chanson_characterize-lithium-batteries-thermal-run-
away-reaction.pdf  

∆𝑝 

https://ec.europa.eu/jrc/sites/jrcsh/files/eric-darcy-nasa-lessons-learned-passive-thermal-runaway-propagation-resistant-designs-spacecraft-batteries.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/eric-darcy-nasa-lessons-learned-passive-thermal-runaway-propagation-resistant-designs-spacecraft-batteries.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/claude-chanson_characterize-lithium-batteries-thermal-run-away-reaction.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/claude-chanson_characterize-lithium-batteries-thermal-run-away-reaction.pdf
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shows an exponential relation with both the energy density and the cell surface 

temperature.  

The extrapolated total reaction enthalpy from the measurement of the 53 Ah cell 

subjected to TR runaway can also be calculated (according to Hess’s law) assuming: 

isobaric conditions, conservation of mass for each element and maximisation of released 

heat of reaction. First, calculating the energy required to decompose the cell contents 

into its elements (3.145 kJ/g), then calculating the energy required to synthetise the 

reaction products (-4.212 kJ/g). This gives a calculated reaction enthalpy of -1.067 kJ/g, 

in agreement with the experimentally measured value (-1.071 kJ/g)2. 

Another technique typically applied for understanding the thermal behaviour of a battery 

system, typical temperatures, generated heat and heat flows is Accelerated Rate 

Calorimetry (ARC) as presented in the workshop5. The heat flow 𝑄̇𝑔 can be expressed as 

the sum of irreversible and reversible heat flows: 

𝑄̇𝑔 =  𝑄̇𝑖𝑟𝑟𝑒𝑣 + 𝑄̇𝑟𝑒𝑣 = −𝐼(𝐸0 − 𝐸) − 𝐼𝑇
𝑑𝐸0

𝑑𝑇
  (1) 

where I is the current, T temperature, E0 open circuit voltage, E voltage under load. 

ARC testing allows the determination of generated heat using different operating modes: 

 Adiabatic mode: defined by no heat exchange between sample and surroundings; 

the environmental temperature of the chamber, TC, follows the sample 

temperature, TS, (ideally TC = TS to ensure adiabatic conditions). 

 Isoperibolic mode: defined by constant environmental temperature.  

 

In both modes, upon determination of the cell's effective specific heat capacity, it is 

possible to determine separately heat generated reversibly and irreversibly. 

It should be noted that ARC testing does not only allow the determination of heat flows 

during normal operating, but also under abusive conditions (where chemical reactions will 

contribute significantly or even dominate the heat generation), typically via the Heat-

Wait-Seek method.  

ARC testing allows the identification of different reactions taking place at different 

temperatures (e.g. decomposition of SEI, anode and cathode reactions with electrolyte, 

combustion of the electrolyte). Further information can be acquired by combining ARC 

testing with gas analysis or by measuring pressure changes inside a cell. Related to this, 

methods for the measurement of both external and internal pressure, where also 

temperature could be monitored in parallel, were presented at the workshop5.  

The possibility of using nail penetration testing within an ARC can provide additional 

useful information5. 

Finally, post-mortem analysis can be considered as a very useful approach to gain further 

understanding of the processes during a TR event. Techniques such as inductively 

coupled plasma (ICP) and X-ray diffraction on harvested materials from a battery cell can 

provide valuable information. The analysis of the reaction product inside a NMC/graphite 

cell being subjected to a TR reaction (steel nail penetration with nail speed: 8 cm/s) 

shows strongly reducing conditions experienced by the cell during TR as the reaction 

product contains Li2CO3, LiAlO2, MnO, Ni, Co species being identified in the X-ray 

diffractograms. Additionally, analysis of ejected materials during TR (e.g. by gas 

chromatography) can also provide additional input. 

                                           
5 M. Rohde (KIT) presentation: "Safety studies on Li-ion cells using combined calorimetric and electrochemical 
methods". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-
calorimetric-electrochemical-methods_.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-calorimetric-electrochemical-methods_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-calorimetric-electrochemical-methods_.pdf
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1.1. Factors influencing occurrence and extent of thermal 

runaway 

There are a multitude of factors that influence the thermal runaway reaction process and 

its consequences. Based on the assessment of the workshop presenters the following 

were identified as major contributors.  

1.1.1.  State of charge (SOC) 

Based on experimental evidences shown by some of the presenters the thermal runaway 

onset temperature (Tonset) depends on the SOC level of the cell6. Experiments on fresh 

2.2 Ah NMC (LiNi0.5Co0.2Mn0.3O2)/graphite 18650 cells, revealed that Tonset decreases when 

increasing the SOC (0, 50, 100 %) from 140 °C to 90 °C. Additionally SOC also 

impacts heat release upon thermal runaway7.  

1.1.2.  State of health (SOH) 

Experiments performed on commercial 2.2 Ah NMC/graphite 18650 cells at 20 °C and 

45 °C lead to a degradation of the cells (SOH at 70 % of the initial capacity), reaching 

< 400 cycles and > 1100 cycles, respectively6. The conditions for the ageing cycling 

were: constant current-constant voltage (CC-CV) charge at 1C (CV phase < C/20) up to 

4.2 V and CC discharge at 1C down to 2.5 V. To have a deeper knowledge of the 

degradation mechanisms taking place under these conditions, several complementary 

techniques were explored. Focussed Ion Beam Scanning Electron Microscopy (SEM-FIB) 

analysis of harvested samples at 80 % SOH showed insufficient SEI formation, with signs 

of co-intercalation, followed by exfoliation, decomposition layer and potential lithium 

plating, all signs of significant cell degradation. Magic angle spinning (MAS) nuclear 

magnetic resonance (NMR) of 7Li (at 80 % SOH) showed the presence of deposition of 

“mossy” metallic lithium for the sample cycled at 20 °C, not visible in the sample cycled 

at 45 °C, confirming a more effective SEI layer at higher temperatures.  

Heat-wait-search experiments in an ARC6 were also performed with heating steps of 5 K, 

followed by 30 min waiting steps and an identification of Tonset through self-sustained 

exothermic reactions when ≥ 0.02 K/min. This technique allows identifying the self-

heating rate of the cell owing to the quasi-adiabatic conditions imposed to the system. 

When the heating rate is > 10 K/min, the temperature of TR is defined (TTR).    

Although in general Tonset decreases when increasing the SOC, as previously mentioned in 

section 1.1.1 State of charge, significant differences could be analysed for the two 

ageing protocols compared by the presenter6. The cell cycled at 20 °C presents less 

dependency of the two parameters, attributed to the presence of metallic lithium, and 

the Tonset values are systematically lower. On the other hand, the cell cycled at 45 °C 

presents higher Tonset values than a non-aged cell (assigned to its thermally stable SEI). 

Therefore, the Tonset depends on the ageing experienced by the cell. Regarding the TR 

temperature experiments showed little to no dependency on the SOH, with values around 

210-220 °C6.  

In a separate experiment5 it was shown that aged cells present a lower Tonset compared to 

a fresh cell and also produce a higher temperature rate, whereas the maximum TR 

temperature reached was fairly similar (230-250 °C).  

Some discrepancy on this topic was shown by other participants to the workshop, as 

some participants considered that cycled/aged cells would be "safer" than fresh ones in 

terms of the amount of heat/energy which potentially can be released by a TR and 

                                           
6 M. Börner (University of Münster) presentation: "Factors influencing the thermal stability of lithium ion 
batteries – from active materials to state-of-charge and degradation". Online access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/factors-thermal-stability-of-li-ion-batteries.pdf  
7 F. Larsson (RISE) presentation: "Thermal propagation in lithium-ion batteries". Online access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-propagation-in-lithium-ion-batteries.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/factors-thermal-stability-of-li-ion-batteries.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-propagation-in-lithium-ion-batteries.pdf
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reaction temperature limit for thermal stability. In principle, cells that have been aged by 

mostly calendar ageing, where degradation is driven by spontaneous side reactions which 

produce heat/entropy, can be considered "safer" than fresh cells. However, cells that 

have been aged by electrochemical cycling are less predictable (e.g. presence of 

dendrites produced by high charging rates). Other important parameters are for example 

the TR onset temperature, released chemical composition and fire characteristic profile. 

In other to determine "battery safety" a holistic perspective is needed.   

In any case, and as suggested by some participants, TP testing would be advisable 

on aged systems, as it seems that the safety of these systems is yet a complex 

and unknown matter.  

1.1.3.  C–rate 

Thermogravimetric analysis (TGA)6 on commercial 2.2 Ah NMC/graphite fresh and cycled 

cells at different C-rates (C/5, 1C and 2C) charged up to 4.7 V displayed a profile with 4 

different features: i) <150 °C, the residual electrolyte components and their 

decomposition products are evaporated, ii) between 275 °C and 375 °C there is a phase 

change accompanied by oxygen release from the cathode active material, iii) between 

350 °C and 450 °C the PVdF binder decomposes and, lastly, iv) at temperatures higher 

than 450 °C there is another phase change with oxygen release.   

Increasing C-rate results in a higher derivative weight vs. temperature, which implies a 

larger mass loss per temperature step and a faster oxygen release. Additionally, 

increasing C-rate results in a larger surface area consisting of a highly unstable 

delithiated structure which can cause degradation effects that clearly influence the 

thermal stability and the safety properties of the cell. Overall, the results obtained 

indicate a reduced thermal stability after cycling at higher C-rates compared to the fresh 

material. 

1.1.4.  End of charge voltage limit 

Thermogravimetric investigations on commercial 2.2 Ah NMC/graphite fresh and cycled 

cells at different end of charge voltage limits (4.20 V, 4.45 V, and 4.7 V) and same C-

rate (2C) showed a minor influence on the thermal stability corresponding to the process 

between 275 °C and 375 °C (phase change accompanied by oxygen release from the 

cathode active material) and around 450 °C (PVdF binder decomposition) as compared to 

the effect of C-rate6. However, the rest of processes are affected, thus the higher the 

cut-off voltage, the higher the derivative weight, which is also higher compared to the 

fresh material. 

1.1.5.  Active cathode material 

TGA experiments6 showed high thermal stability of Lithium iron phosphate (LFP) in both 

the charged and the discharged states. In the case of Lithium nickel manganese oxide 

(LNMO) there is a reduced thermal stability in the charged state (4.9 V) due to the 

presence of Ni4+ (phase change accompanied by oxygen release), also the binder 

decomposition shows a higher derivative weight compared to the discharge state (3.0 V). 

Similarly, both NMC111 and NMC622 showed decreased thermal stability in the charged-

delithiated state (4.2 V). 

In a separate experiment carried out by another presenter5, three different cathode 

materials were assessed (NMC, LMO, LFP). In the region between 80-130 °C (region 

attributed to the exothermic SEI decomposition) a similar behaviour was demonstrated 

by the three materials. Next, between 130 and 200 °C (region assigned to the solvent 

reaction, exothermic reaction between intercalated Li and the electrolyte and the 

reduction of electrolyte at negative electrode), LMO showed the most rapid increase in 

temperature (up to  600 °C), followed by LFP ( 250 °C) and finally NMC ( 700 °C). At 

temperatures > 200 °C, the exothermic reactions between active positive material and 

electrolyte leading to a rapid generation of oxygen occur. In regard to the overall 
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temperature rate (in °C/min) upon TR vs. temperature, NMC reached a higher rate, 

followed by LMO and a much lower rate for LFP.  

1.2. Chemical hazards and related considerations 

A complex mixture of flammable/toxic gases is expected to be emitted during a thermal 

event in a Li-ion cell even at relatively low temperatures (< 100 °C). However, this is 

covered by a relatively limited number of publications [5, 6, 24]. Confined spaces add an 

extra dimension to the problem (e.g. tunnels, underground car parks). Moreover, there 

can be gas release before and without thermal runaway, involving multiple vents, which 

might not be visible to the naked eye [24]. 

Below we present an overview of the points discussed during the workshop considering 

chemical hazards.  

1.2.1.  Hydrofluoric acid (HF) and other fluorides 

Hydrogen fluoride has been the focus of toxicity research in LIBs due to its hazardous 

nature [5]. Other fluoride gases (e.g. POF3 emissions at 200 C [24]) are also present in 

the emissions stream, but have not received much attention in the literature [5, 24] and 

little or no toxicity data is available.  

The sources of HF are basically: 

 PVdF: polymeric binder is typically used in batteries, which upon decomposition 

leads to the formation of HF at elevated temperatures (> 400 C).  

 LiPF6 salt: used in most battery electrolytes. It decomposes at high temperatures 

into LiF and PF5; PF5 forms HF with the organic solvents of the electrolyte. 

 Fluorine based additives which can be present in the battery electrolytes.  

The amount of HF that can be released in a thermal event involving LIBs, depending on 

the type of cell and SOC, ranges between 20-200 mgHF/Wh as measured during fire tests 

of 7 commercial 6.8 Ah LIBs7. Extrapolation to a 100 kWh battery pack fire would result 

in 2-20 kgHF. This translates to an Immediately Dangerous to Life of Health (IDL-2= 

25 mg/m3; immediately dangerous to life or health within 30 min) in a volume range 

80,000-800,000 m3. A volume reduction by a factor 5.6 would translate to a lethal 10-

minute value (acute exposure guideline level (AEGL) 3= 139 mg/m3). The scenario of a 

confined space leads to an even more worrying situation. The total amount of fluoride 

compounds can be measured during TR using gas-washing bottles7.  

Values ranging 4-5 g of fluoride were measured in the range of SOC from 0 to 100 % for 

the commercial 6.8 Ah LIBs studied by the presenter7 [5].  

HF can also be emitted during internal combustion engine vehicle fires [33] (from 

fluorinated materials contained in the vehicle such as refrigerant in the air conditioning, 

plastics), but in lower quantities compared to the amount of HF emitted in EV fires.  

Research towards toxic gas dispersion in confined spaces, such as tunnels or 

underground parking is needed. 

A discrepancy of opinions around this topic became obvious. Some participants to the 

workshop claimed that only traces amounts of HF would actually be released as a 

significant part of it would rapidly react with for example LiCoO3, Al2O3 and the aluminum 

(current collector).  

1.2.2.  Cathode active material 

There is a general belief that some cathode materials are "safer" than others, 

however an overall safety assessment is required. A prototypical example of a 

"safer" cathode material is LFP. Typically upon TR it generates less heat and seldom 

ignites, but without fire/combustion of the emitted gases, there is an increased risk for 



 

13 

gas explosion due to for example delayed ignition7. This highlights the need to carry out 

an overall safety assessment, which not only includes the battery size and design, but 

e.g. also the environment where the battery is used.  

1.2.3.  Flammability and oxygen availability 

Combustion of combustible substances emitted by the cell upon thermal runaway will 

increase the amount of total heat generated. This increase can be estimated to be a 

factor of 3-4 higher compared to the situation without combustion. Based on some 

experiments performed on commercial cells upon full combustion of all components 

(100% efficiency), the combustion energy can reach ~5-20 times the electrical energy7 

[5]. 

Based on the literature and the non-published data presented in the workshop4, it has 

been reported that the total heat released (obtained by integration of the Heat Release 

Rate (HRR) curve) measured with complete combustion is proportional to the cell size 

with absolute values ranging 4 to 10 MJ/kg maximum (compared to the combustion of 

paper and plastic in the range of 10-40 MJ/kg), whereas the heat released in the TR 

reaction only (calculations based on the maximum temperature of cells/batteries and 

specific heat) falls < 1 MJ/kg for various types of Li-ion chemistries and various types of 

abuse.  

HRR per kg of batteries may decrease with heavier batteries because not all the cells 

within the battery assembly are reacting simultaneously. Therefore maximum HRR does 

not scale with the weight of the battery. However, the total energy release, which is the 

accumulated HRR over the complete burning time, given that the battery pack is fully 

combusted, will scale with weight. 

The degree of combustion influences smoke/gas composition7. Moreover, if there is no 

fire, toxic and flammable gases can accumulate and cause a delayed ignition (via auto 

ignition due to hot parts/electrical connections, sparks, external sources, etc.) or even a 

gas explosion, which can be more severe. Battery size, exposure and its environment are 

important for safety considerations. Generally speaking, gas release without 

flame/ignition typically renders more toxic gas compositions.  

A factor, which is often not considered, is that typically only limited amount of air (and 

oxygen) is present inside battery enclosures and that can have a significant impact on 

reactions and severity of the thermal event. 

Another point to consider is that the use of some additives or flame retardants may be 

contra-productive, enabling the buildup of more toxic/flammable gases, with higher risks 

for gas explosions, which may be the worst case situation.   

1.2.4.  Firefighting considerations 

Firefighting of Li-ion batteries is typically not well studied7. The usual recommendation is 

to use large amounts of water (cool down effect). As pointed out by the presenter, this 

could raise several issues: non-availability of large amounts of water, design of the 

battery packs might make difficult accessing the inside cells (e.g. IP67 protection), 

likelihood of fire re-ignition and finally, the disposable water used in the exhaustion has a 

rather toxic nature (capture and transform the toxic gas problem to a toxic liquid 

problem).  

Additionally firefighters would potentially encounter the situation that HF gas may 

penetrate their ordinary suits, thus the use of a HF detector sensor could be advisable. 

The use of breathing filters and chemical protection suits by the firefighter brigade was 

discussed; the use of environment independent breath units or at least filter mask is 

absolutely necessary extinguishing Li-battery fires. However, cost is the major drawback 

as pointed out by some participants.  
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On the contrary, other workshop participants were less concerned in regards to the 

toxicity of emitted HF, as HF reacts readily with many materials to form fluorides (SiO2, 

Al2O3, etc.) with limited water solubility, therefore reducing the toxicity hazard towards 

safety personnel. Future research on this respect would be highly desirable.  
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Session 2. Thermal Propagation 

The objective of thermal propagation testing is to verify that a lithium ion battery module 

or pack can withstand a single cell TR failure. In principle, failure of one cell should be 

contained within the battery pack and not cause its entire destruction ('benign failure'). 

This is more relevant for large format applications such as automotive or stationary grid 

power applications and applications where egress of people is a concern8.  

Correlation of thermal runaway energetics to the observation of failure propagation can 

inform and guide battery pack design. Other contributing factors that need consideration 

are the presence of heating (adjacent fire heating, ejecta of cell parts, short circuit 

heating, heat sink packaging, etc.) and cooling strategies. A cell may exhibit dramatically 

different failure response when in a string, a module or a pack than during single cell 

abuse testing9.  

Comparative results on single cells (LFP, 26650 type) and a 10 cell arrangement (1s10p) 

demonstrate this statement9. Whereas in the first case, cell temperatures rise quite 

moderately to a maximum value of around 100 °C within the first minute after initiation 

followed by cooling off, in the second case, temperatures approach 370 °C for the 

initiated cell, and around 250 °C for the neighbouring cells in a two-step profile (first 

temperature rise 2 min and a second temperature rise 12 min). Therefore thermal 

propagation testing at higher levels of assembly (e.g. module or pack) is of great 

importance, as the behaviour of a single cell (despite being relevant) is not necessarily 

indicative of battery module or pack performance. 

In general it can be assumed that cell level failure is determined by intrinsic cell 

properties, whereas module or pack level failure is predominantly affected by 

engineering/design8. 

2.1. Factors influencing thermal propagation 

Cell to cell propagation is influenced by the TR characteristics of the cell and it is 

determined by the balance between heat generation and heat removal. Also the short 

circuit current is a fundamental parameter in the process (which ultimately contributes to 

heat transfer). TP propagation is influenced by many other parameters: the starting 

temperature of the system, the heat conduction between adjacent cells, the mechanical 

structure of the module or pack, the cooling strategy and cooling power, etc.  

Total heat released is important as well as the heat release rate. This can be influenced 

by multiple factors: cell type, SOC, cell status (ageing/SOH), availability of oxygen, type 

of abuse (e.g. external heating, fire, overcharge, and mechanical crush), presence of an 

ignition source, etc.  

The ideal operation temperature of Li-ion batteries is in the range 20 – 40 °C. It is 

important to assess the homogeneity of the temperature distribution within a battery 

pack: depending on the application and requirements, the temperature spread between 

different cells should be as low as possible (typically a few degrees) and the temperature 

difference within one cell should also be minimised (10 °C might still be acceptable). 

Higher temperature spreads might lead to rapid ageing or imbalance between different 

cells5.  

                                           
8 D. Doughty (Battery Safety Consulting) presentation: "The landscape of thermal runaway propagation 
testing". Online Access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/daniel_doughty_battery_safety_consulting_the_landscape_of_thermal
_runaway_propagation_testing.pdf  
9 C. Orendorff (Sandia National Laboratories) presentation: "Fundamentals of failure propagation in lithium-ion 
batteries". Online access: 
https://ec.europa.eu/jrc/sites/jrcsh/files/christopher_j._orendorff_sandia_national_laboratories_mechanisms_a
nd_m.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/daniel_doughty_battery_safety_consulting_the_landscape_of_thermal_runaway_propagation_testing.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/daniel_doughty_battery_safety_consulting_the_landscape_of_thermal_runaway_propagation_testing.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/christopher_j._orendorff_sandia_national_laboratories_mechanisms_and_m.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/christopher_j._orendorff_sandia_national_laboratories_mechanisms_and_m.pdf
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Several design strategies can be exploited in order to mitigate TP. Some of the most 

relevant ones are discussed in detail in Session 4: Safety strategies. 

In the following several factors will be discussed supported by the results and 

investigations presented by the speakers to the workshop.  

2.1.1. Cell type and cell to cell electrical connections 

In the case of cylindrical cells, it has been reported that the thickness of the wall can 

have a significant impact on the propensity towards side wall breaching/ruptures3. For 

cells having > 660 Wh/L, the propensity is rather high. Also the crimp burst pressure of 

the safety vent can impact the occurrence of ruptures. The ejection of cell components, 

hot gases and electrolyte towards adjacent cells (which can cause circulating electrical 

paths, on top of creating an additional heat source) likely influences the cell to cell 

propagation.  

The effect of the cell to cell electrical connection was presented9. For this, the 

propagation behaviour of 1s10p and 10s1p arrangements was compared. Initiation of 

one cell was carried out by nail penetration along the longitudinal axis, both on the edge 

of the assembly or the centre of the assembly. Three types of cells were investigated: 

LCO 18650, LFP 18650 and 26650 cells. Results for LCO cells showed complete 

propagation for the 1s10p arrangement (regardless of the initiating cell location) and a 

range of responses for 10s1p arrangement, from limited to complete propagation. As a 

contrast, LFP 26650 cells in 1s10p arrangements showed no propagation, however after 

installation of a copper bus cell to cell propagation was observed demonstrating how the 

pack design impacts the ability for failures to propagate.  

Mechanical abuse via nail penetration of NMC cells (18650 type) in a 1s2p configuration 

was also presented9. The cells were connected through a bridge wire and the effect of 

this connection in the TP process was evaluated. For this, efforts were made to maintain 

the electrical connection between the two cells after TR (using a spring on the nail that 

applies an opposing force, keeping the cell from ejecting out of the enclosure upon TR). 

In both setups, the peak currents measured across the bridge during failure propagation 

were consistent ( 50 A), however the total energy discharged into the initiation cell 

varies depending on the robustness of the electrical connection: 0.027 kJ and 5.3 kJ for 

the cells without and with spring, respectively. In the first case there was a loss of 

electrical connection, which stops the discharge of the neighbouring cell into failure point 

avoiding TR. 

2.1.2. Active cathode material 

The short circuit current measured during failure propagation for different chemistries 

shows that LFP is, in principle, a more benign cathode material as it is able to sustain 

high discharge currents during a longer period of time releasing a higher total energy 

during discharge compared to LCO, NMC and NCA based batteries9.  

Comparing a same type of configuration, 1s10p arrangement of cylindrical cells, it was 

demonstrated in 2.1.1 Cell type and cell to cell electrical connections that 

propagation occurred for LCO based cells but not for LFP based cells9.  

2.1.3. State of charge 

As previously mentioned, the state of charge of the battery cell has a great impact on its 

thermal runaway behaviour. Thus it is not surprising that the SOC influences the cell to 

cell propagation behaviour of a module or pack.  

When evaluating a 5 cell string of pouch cells based on LCO chemistry (3 Ah), at two 

different SOCs (50 and 80 %) it was observed that there was no TP propagation in the 

case of the lower SOC, contrary to the situation with higher SOC (total pack propagation 

occurred in < 4 min). Also there was a significant difference in the maximum 

temperature reached. At 50 % SOC the initiated cell only reached < 100 °C (< 50 °C for 
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the neighbouring cells), whereas at 80 % SOC the maximum temperatures achieved 

ranged 400-550 °C9.  

2.1.4. Thermal runaway initiation method 

Several safety incidents that took place in the field were attributed to an internal short 

circuit that was not detectable or predictable at the time of manufacture. This can be 

attributed to either a latent defect which gradually moves into position to create an 

internal short while the battery is in use, to an inadequate design or to an operation 

(cycling) off-limits which can cause Li plating, eventually stressing the separator to the 

point where anode and cathode electrically connect. Current abuse test methods 

designed to mimic an internal short circuit event (e.g. crush, nail penetration, 

overcharge) may not be representative of field failures. Therefore there is still a great 

controversy around the selection of a TR initiation method10. In fact, to date, no reliable 

and practical method exists to create on-demand internal shorts in Li-ion cells 

that create a TP and that produce a response that is relevant to the ones 

produced by field failures. Thus, currently "traditional abuse testing" is the only 

alternative to evaluate TP in a testing environment.  

Preliminary results were presented on a 5 cell string of pouch cells based on LCO 

chemistry (3 Ah), comparing nail penetration and overcharge (1C) initiation methods9. In 

general it can be stated that the initiation by overcharge is more energetic, with a faster 

heating rate compared to the initiation by nail penetration. However, the overall 

performance of the module was fairly similar for the two methods; similar maximum 

temperatures (ranging 500-700 °C), similar time to complete propagation (1 min for 

overcharge and 1 min 20s for nail penetration). This experiment leads the presenter to 

conclude that the different amounts of energy introduced by different initiation methods 

may have little on the TP performance of the system.   

2.2. Simulation and modelling of thermal propagation 

TP testing of large, complex systems is fairly resource intensive. Modelling and simulation 

represent a potential remedy to this, allowing deducing a large amount of information 

from a relatively small number of tests. 

An electro-thermal and abuse model using lumped cell materials properties was 

presented9. For this LCO pouch cells were arranged in a 1s5p configuration. TR was 

initiated via side nail penetration on the centre of the module. In general, there was a 

good agreement between the initial simulations and the experimental results with some 

deviations, particularly in the long lasting events likely due to electrical or connectivity 

changes within the battery during failure.  

Another strategy presented by another workshop participant followed the next steps11: 

i) Development of an empirical method to investigate abusive behaviour to obtain input 

parameters and validation data. This step aims at identifying the triggering TR 

temperature (Tonset) and at measuring the heat released/generated. For this 2.5 Ah 

18650 cells based on NCA chemistry using an ARC were abused by the steel nail 

penetration method. Based on the calorimetry data a release of 72 kJ was measured in 

the first 20 s into TR. The amount assigned to the gas was 30 kJ, although the test set-

up employed allows for certain amount of the gas released to be excluded from the heat 

measurement. Tonset was obtained by the heat-wait-seek method.  

                                           
10 M. Keyser (National Renewable Energy Laboratories, NREL) presentation: "NREL/NASA internal short circuit 
instigator in lithium ion cells". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/matthew_keyser-nrel-
nasa_internal_short_circuit_instigator_in_lithium_ion_cells.pdf 
11 E. Kolp (TUM) presentation: "Thermal modelling of thermal runaway propagation in lithium-ion battery 
systems". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-modelling-of-thermal-runaway-
propagation.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/matthew_keyser-nrel-nasa_internal_short_circuit_instigator_in_lithium_ion_cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/matthew_keyser-nrel-nasa_internal_short_circuit_instigator_in_lithium_ion_cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-modelling-of-thermal-runaway-propagation.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thermal-modelling-of-thermal-runaway-propagation.pdf
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As mentioned in section 1.1.1 State of charge, the Tonset decreases when increasing the 

SOC, however in these set of experiments the reduction was not very pronounced. 

Values range from  150-160 °C at 0 % SOC, to  135-145 °C at 100 % SOC. At higher 

SOC values (overcharged cells) the decrease in Tonset is significantly more severe, as 

values drop down to 80-60 °C in the SOC range from 110 to 145 %. The temperatures 

achieved have an implication towards the separator melting and the different mechanism 

upon TR.  

ii) Simplified semi-empirical simulation model for thermal propagation 

The model used by the presenter consisted of 12 fully charged lithium ion cells connected 

in series (including connectors and casing). A cell is triggered into TR (via nail 

penetration) and the simulated results are compared with the experimental ones.  

Thermal conductivity (radial 0.01-3.4 W/m K and axial: 20.06-31.90 W/m K) and heat 

capacity (702-836 J/K kg) were determined by using a custom hot disk (transient plane 

source consisting of a heat source and a heat sensor).  

The results of the simulation lead to a temperature increase from 20 °C to 470 °C in less 

than 2 s after cell initiation. After 10 s, neighbouring cells heat up to 70 °C and after 

110 s a cell to cell propagation occurs. Simulation shows that the design of the module 

itself affects the heat propagation.  

Comparing simulation to the experimental results, significant divergences were found11. 

Despite that significantly higher temperatures were measured in the experiment 

compared to those obtained by the simulation, there was no further thermal propagation. 

The presenter explained this discrepancy based on the design of the module enclosure; 

the set-up was designed to have an opening in a corner of the module enclosure; the 

gases released through that opening (heat release and direction of gas flow) were found 

to have a great impact.  

In order to overcome the limitations explained above for the previous model, 

implementing the gas flow of the venting is necessary. A Computational Fluid Dynamics 

(CFD) model approach was explored as alternative. For this, the investigations of Colella 

[34] and Coman [35] who studied the hazard level of the environment to model 

ventilation and a lump model for venting, respectively, were taken as reference. Several 

assumptions were made for the 2D model: similar gas specifications to H2, negligible 

heat transfer via the solid bodies (cell connectors) as well as of heat generated by the 

initiated cell. With the CFD model, contrary to the thermal model, the gas temperature 

inside the module can be taken into account. Contrary to the experimental observations, 

the simulation showed that the temperature of the side opening in the module and the 

neighbouring cells increases rapidly after the nail penetration due to the vented gas.  

The presenter11 identified the following issues and limitations of accurate modelling: 

 3D CFD modelling is time consuming. 

 Uncertainty of input parameters (e.g. certain properties which are temperature 

dependent are not available, cell temperature measurements are typically done 

exterior to the cell, whereas the inside temperature would be more meaningful). 

More information of temperature dependence of physical properties and 

behaviour of vented gas during TR are necessary. 

 Accurate information of the venting is needed (e.g. vent size, vent position, heat 

release, mass rate, and velocity of gas). 

 Nail penetration was found to be an unsuitable initiation method by the presenter 

(although considered to be useful by other participants to the workshop). 

Standardised abuse testing regarding TP is required. 
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Final proposal by another presenter was based on LT-spice freeware computer software 

for thermal network simulation12. Systems like Openmodellica or Dymola were also 

mentioned as suitable simulation tools. However, a library of thermal elements is needed 

(e.g. heat conductor, heat pipe, phase change material (PCM)). The use of cell internal 

thermocouples as demonstrated in Section 3 is highly desirable. Finally it is suggested 

that the measurement of heat conductivity and heat capacity of failed cells would provide 

valuable input to the simulation. Ideally industry and battery manufacturers could use 

this tool in their designs to find joint solutions for preventing TP once TR has been 

initiated at cell level.  

  

                                           
12 A. Golubkov (Virtual Vehicle) presentation: "Initiation of thermal runaway with different heating devices". 
Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/initiation-of-thermal-runaway.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/initiation-of-thermal-runaway.pdf
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Session 3. Thermal runaway initiation methods, fit-for-purpose 

testing related to external and internal abuse triggers 

Thermal runaway initiation methods can be classified into two types: externally initiated 

triggering methods (e.g. of mechanical, electrical and thermal nature) and internally 

initiated triggering methods (e.g. electrode defect, incorporation of metals). They both 

aim at creating an artificial ISC that develops an initiating cell into TR. Then, the cell to 

cell propagation is investigated either at module or pack levels.  

Below a small overview of the most common TR initiation methods is presented (13,14) 

summarising their pros and cons.  

3.1. External triggering methods 

3.1.1. Mechanical initiation methods 

Nail or 

needle 

penetration 

 

Nail penetration test is required in a number of standards 

(e.g. [20, 31, 36, 37]). The test simultaneously measures 

nail acceleration, cell temperature, cell terminal voltage, 

resistance and cell deformation. 

This method results in a multi-layer damage and the 

outcome of the test is very dependent on several factors: 

position, nail characteristics, penetration depth, etc. 

Another negative aspect related to this method is that the 

selection of a cell within a module or pack can be restricted 

to those cells located externally as cells located in the 

interior of the casing can only be accessed with difficulties.  

Occurrence of TR and its extent depends on nail and depth, 

tip shape, surface of the nail, alloy composition, etc. 

Poor reproducibility. 

Drilling of the pack casing is needed in order to access the 

initiating cell (special preparation of the module and special 

openings of the housing are essential for testing). Not 

feasible with most cell packs. 

Similar tests: bullet firing, screw penetration, ceramic nail 

penetration. 

Blunt rod 

 

The blunt rod method [38], also known as the IIISC 

(Indentation Induced Internal Short Circuit), is not so 

widely used as the nail penetration method. It deforms the 

most outer electrode layers and eventually creates a short 

circuit.  

Damage of separator followed by single or multilayer 

strike. 

Results are more related to the mechanical properties of 

the separator, electrode structure, and influenced by the 

case design  

Suitable for pouch cells, used for cylindrical cells, seldom 

applied for prismatic hard case. 

                                           
13 Harry Döring (ZSW) presentation: "Initializing of thermal runaway for lithium-ion cells focusing on the effect 
of internal short circuit". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-
runaway-for-lithium-ion-cells.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
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Similar difficulties as discussed above for the nail 

penetration method. 

Crush 

 

Crush impact is a useful method to assess the robustness 

of a system (cell, module, pack, and vehicle (crash)).  

Multi-layer strike between electrodes, electrodes and 

construction elements.  

It might not be developing into TR necessarily.  

Initially not suitable as TP triggering method.  

Pinch 

 

Requires access to the cell from two opposite directions.  

Might be problematic to apply to a cell in a pack due to 

access limitation. 

Initially not suitable as TP triggering method. 

Water 

immersion 

 

Immersion in water does not only damage the battery 

itself, but also the electronics built into the battery. 

Presence of water also severely changes thermal properties 

of cells surrounding.  

Initially not suitable as TP triggering method.  

3.1.2. Electrical initiation methods 

Overcharge 

 

The overcharge method is a possible initialisation method 

for TR, however one of its main drawbacks is that it adds 

additional electric energy to the system.  

Moreover manipulation of protection devices might be 

necessary; some cells are equipped with passive 

protection devices like a circuit interrupt device (CID), 

which might need to be disabled/manipulated prior to 

testing.  

Special preparation and wiring of the module to connect to 

a single cell is needed. 

High voltages might be needed when the cell contains 

stable separators.  

External 

short-

circuit 

 

This method does not necessarily lead to TR in all types of 

cells (current might not be high enough to cause TR for a 

single cell). 

Additional uncontrolled heating of cell. 

Similar difficulties as discussed above for overcharge. 
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3.1.3. Thermal initiation methods 

Heat 

 

Heating methods add significant energy (thermal) to the 

system, add unwanted preheat to adjacent cells and 

manipulation for installation the heating device is 

necessary. 

Multi-layer strike via separator failing. 

Additional problems can be pointed out in the case of 

using a slow heating rate:  

• slow thermal discharge of the cell, energy release 

of a longer time  

• neighboring cells get preheated for a longer time, 

promoting propagation effect 

Laser impact 

light beam 

 

Single or multilayer strike. 

Can realise very small impact. 

Uneconomical, complex set – up. 

Special openings of the housing are essential. 

Impracticable in the normal everyday life of a testing 

facility. 

Heat exposure of a system may lead to a series of effects: SEI layer breakdown, 

electrolyte degradation, venting by evaporated electrolyte, reactions anode-electrolyte 

and cathode-electrolyte, gas formation, separator shut down, separator melting, internal 

short-circuit, massive energy release, fire... 

Fast heating prevents excessive heating of neighbouring cells, however a good heat 

transfer to the triggering cell is required. 

Heating of pouch cells can be realised by using a custom made sample holder with 

ceramic wool sheets in both sides of the cell12 (see Figure 3). The holder is closed by 

screwing two stainless steel plates having four springs that simulate the mechanical 

forces inside a module. Four electric strip heaters are located in the external part of the 

holder, with two heaters on each side of it. Maximum expansion and gas pressure and 

gas composition (via GC/FTIR) can be measured with this set up.  

 

Figure 3. Example of pouch cell holder suitable for heating initiation method. Reprint from 12 
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By inserting thermocouples inside the pouch cell, most accurate measurements are 

ensured. Handling and manipulating the cell is obviously required, but the information 

obtained is more meaningful for creating a TR model. As an example in the results 

provided by the presenter12, inside temperatures at the centre and outer parts of the 

electrode reached 1,000 °C whereas the temperature recorded by externally connected 

thermocouples varied between  450-800 °C.  

3.2. Internal triggering methods 

Another strategy to initiate a single cell TR is to create an internally driven abuse to a 

cell. This can be achieved by several ways. A summary of those presented at the 

workshop is presented in the following. It should be mentioned that there is currently no 

simple way to transport modified cells, which means that cell preparation and test 

execution should be carried out at the same location. 

Nickel particle 

method 

 

Large manipulation (high effort; cells must be 

specially prepared by the cell manufacturer and have 

to be transported to the lab), not reliable. 

Incorporation of particles followed by applied 

pressure.  

Single layer strike. 

Metals with low 

melting point 

implantation 

Large manipulation, not reliable. 

e.g. Wood’s metal, heat exposure for melting.  

Single layer strike. 

Wax based 

implantable 

device 

The method developed by NREL/NASA10 [39] aims at 

simulating an ISC capable of triggering the four types 

of cell internal shorts: 1) anode to cathode, 2) anode 

to positive current collector, 3) positive current 

collector to negative current collector and 4) cathode 

to negative current collector.  

Cumbersome manipulation.  

Single layer strike. 

Shape memory 

alloy (SMA) 

implantable 

device 

The SMA material is used to pierce the separator as it 

bends when heated [40].  

Cumbersome manipulation. 

Single layer strike. 

Internal heating 

device 

 

Heating device installed inside the cell. 

Heating occurs in a localised manner, but the 

insertion of the heating device requires significant 

manipulation of both at cell level and higher levels 

(module, pack).   

  



 

24 

The wax based initiating device, US Patent#: 9,142,189 [25], consists of a 

microcrystalline wax and an electrolyte-compatible PCM, which can be triggered by 

heating the cell above PCM melting temperature (presently 40 °C-60 °C). The device is 

rather small and implantable into Li-ion cells, preferably during assembly.  

Some test examples obtained using the wax device are summarised in the following10. 

8 Ah Dow Kokam cells at 10 % SOC were used in order to assess the different voltage 

profiles obtained for the four types of ISCs mentioned above. The combinations 1) and 4) 

resulted in a moderate voltage drop upon activating the ISC device, indicative of a less 

energetic SC. Then the combination 2) showed a more drastic voltage drop and a hard 

short circuit for the combination 3), with a SC duration of < 50 ms before cell OCV 

bounces back to nominal. Additionally, for the combination 3) melted Al was visible after 

test indicative of the high currents and high temperatures reached. The significant 

differences showed by the four combinations can explain the lack of reproducibility of 

certain ISC initiation methods. For example, testing of cells at 100 % SOC has shown TR 

when combination 2) is used but not in the case of combination 4).  

Testing was also performed in fully charged cylindrical cells of 2.4 and 3.5 Ah10. Ejection 

of the jelly roll was observed upon TR, with the following features also visible: top edge 

of crimp shows reflow of steel, side wall breach in neck of crimp is clogged with ISC 

device and finally a smaller breach in can wall is slightly off the ISC device clogging and 

above it.  

It is also worth mentioning that the position of the implantable device in the cell might 

impact the results3. Experiments were performed in cylindrical cells at various locations: 

3 winds into the middle of the jellyroll, 6 winds into the middle of the jellyroll, 3 winds 

into the top of the jellyroll, 6 winds into the bottom of the jellyroll.  

As demonstrated by the inventors of the method, overall the wax method is a 

reproducible and consistent method, which allows clear differentiation of the impact of 

the starting test conditions (e.g. SOC, age) which can provide relevant data for ISC 

models.  

An example of internal heating device approach was also presented12. A heater wire was 

inserted into a jelly roll. First attempts to generate a TR were unsuccessful as the wire 

failed before TR started. The internal short circuits induced damaged the cell significantly, 

making it more vulnerable to an external heating method. In a manipulated cell with 

inserted wires the TR started at 100 °C, whereas the same-not manipulated – cell would 

normally enter TR at around 200 °C. Whereas this experiment could not be considered 

fully successful, investigations on improved heating devices (SiN ceramic heater) are 

underway. Their small dimensions (e.g. down to 3 x 7 mm) makes them, in principle, a 

suitable candidate for part of type approval testing of battery packs and modules.  

As conclusions related to this section, it can be mentioned that all initiation methods 

present serious disadvantages and may end in a different behavior of the module or 

system. Battery pack manipulation is unavoidable in most cases. Additionally, there is no 

method that is applicable for all type of cells14. Some methods might be able to drive a 

battery system into TR (e.g. by nail penetration) whereas other methods (e.g. 

overcharge, short circuit) might be unable to do so. Therefore in order to demonstrate 

that a battery system is robust towards TP, it is recommended to perform an initial 

assessment aimed at defining a triggering method at cell level, followed by the actual 

propagation testing triggered by the method adapted from that initial assessment. This 

approach can be summarised by the schematic depicted in Figure 4. 

                                           
14 R. Hettrich (CTCadvanced GmbH) presentation: "Propagation tests on lithium ion batteries from the 
perspective of an accredited test lab"  
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* number of iterations need to be decided 

Figure 4. Possible TR and TP testing sequence 

A practical aspect that deserves consideration relates to the testing set-up when 

performing ISC testing on single pouch-type cells. In this case there is a need to apply 

certain pressure to the cell in order to hold the pouch cell layers together10. Once the ISC 

is initiated gases evolve, and due to the flexibility of the packaging, cells tend to balloon. 

Therefore, in order to sustain the ISC, certain pressure perpendicular to the pouch cell 

needs to be applied. 

Another aspect raised during the workshop, relates to the fact that fresh batteries 

(batteries at BOL) are likely to behave differently than batteries at end of life (EOL). In 

fact, some experiments were presented where a battery at EOL developed into TR upon 

nail penetration testing, whereas the same type of battery at BOL showed no visible 

reaction14.  

Overall, safety tests have to be comparable between different test labs and should be 

reproducible, but in reality the test set-up has a big influence on the test result. Several 

examples that illustrate this situation are: i) the wiring to connect a single cell with the 

test unit may result in a short circuit of other cells due to overheat of the wire, resulting 

from the overcharge current14, ii) exhaust gases ignited by an external spark generated 

by a damaged test cabling, iii) fire leaves the housing (which would qualify as a fail for 

many standards) through special openings created for test wiring or for nail penetration.  

Many parameters are not fully defined or can be misinterpreted in the existing testing 

standards, which obviously has a great impact on the test outcome and test to test 

repeatability and reproducibility. Participants to the workshop agreed that more 

guidance and improved testing descriptions are needed. 

  

TP test 

 

 

 

No No No* 

Yes Yes Yes 
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Session 4. Safety strategies; methods for detecting, mitigating and 

preventing thermal propagation; anti-cascading 
strategies 

Upon TR of a single cell, extreme convective and radiation heat is being produced, high 

temperatures (up to 700-1200 °C) as well as possibly open flames and ejection of toxic 

and flammable gases occur. In order to avoid a cell to cell propagation, risk mitigation 

measures need to be implemented. In current commercial batteries a wide range of cells, 

cell types and pack designs are used. Up to today, no single approach towards mitigating 

thermal propagation has been identified and as a consequence a wide range of different 

battery pack design solutions are available. It seems improbable that a single approach 

will be found, at least in the near future. Instead, a range of different measures is 

typically combined for achieving a sufficient level of safety. 

Such protection strategies have to take into consideration the level of applicability of a 

single measure: from cell, module, pack, battery management system, containment, 

application (e.g. passenger cars, commercial cargo, stationary applications) to 

environment/infrastructure/emergency services, etc. (see Figure 5). 

 
Figure 5. Different levels of a battery system which are relevant for mitigating risk related to 

thermal propagation. Reprint from 7 and reference [41]  

A series of mitigation strategies were proposed by the different speakers (Table 1).   

Table 1. List of mitigation strategies as mentioned by several presenters [3,11,15-17]  

Mitigation strategy Effect towards TP 

Modified separators (e.g. PE, PP/PE/PP, PE-

based with ceramic coating/particles). 

Shutdown separators  

Rise the TR trigger temperature (Tonset) by 

avoiding short circuit caused by separator 

failure 

Minimum thermal shrinkage of the 

separator 

Modified electrolyte (non-flammable or less 

flammable electrolytes) 

Avoiding flammability limits heat 

generation (and potentially further 

damage) 

All-solid-state batteries  No to lower risk of fire/explosion (no 

                                           
15 C. Middendorf (3M) presentation: "Design concepts and materials for thermal propagation prevention". Online 
access: https://ec.europa.eu/jrc/sites/jrcsh/files/concepts-materials-thermal-propagation-prevention.pdf  
16 W. Prochazka (AVL) presentation: "Cost and performance penalty of thermal propagation mitigation and 
venting measures". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-
performance-penalty-thermal-propagation-mitigation-venting-measures.pdf  
17 P. Kritzer (Freudenberg) presentation: "Preventing thermal propagation – approaches & effort to implement 
them in a battery system". Online access: https://ec.europa.eu/jrc/sites/jrcsh/files/preventing-thermal-
propagation-battery-system.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/concepts-materials-thermal-propagation-prevention.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-performance-penalty-thermal-propagation-mitigation-venting-measures.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-performance-penalty-thermal-propagation-mitigation-venting-measures.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/preventing-thermal-propagation-battery-system.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/preventing-thermal-propagation-battery-system.pdf
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Mitigation strategy Effect towards TP 

liquid/flammable electrolytes) 

Electric fuses (e.g. wire bonding) Reduce the released electric energy during 

an ISC 

Incorporation of materials with increased 

thermal capacity (e.g. phase change 

materials, endothermic filler materials) 

Increase heat dissipation. Cooling effect 

due to phase change 

High performance insulation materials 

between cells/modules (e.g. fire 

walls/thermal barriers, ceramic materials 

resistant to high temperatures, flame 

retardant barriers/sheets such as Nextel™ 

ceramic textile or intumescent materials 

which swell/expand as a result of exposure 

to heat, expanding coatings, heat shields) 

Increase thermal resistance between 

cells/modules  

Thermal energy transfer to neighbouring 

cells is minimised 

Physical separation between cells and/or 

components 

Increase thermal resistance  

Vaporising runaway shields Increase thermal resistance and cooling 

effect during vaporisation of liquid 

Defined breaking/venting points  Protect neighbouring cells from cell ejecta 

(vented gases, solids, liquids) and 

circulating currents  

Reduced risk of side wall ruptures 

Directing/channelling venting (less efficient 

for pouch cells) 

Provide tortuous path for the ejecta  

Heat carried by vent gases is removed in a 

controlled way; inflammation of vent gases 

can potentially be avoided which reduces 

heat introduced to certain cells 

Venting valve with limited back-mixing Limit amount of available oxygen and 

thereby released energy 

Vents with flame arresting screens Prevent flames and sparks exiting the 

battery pack enclosure 

Bottom vent designs (low pressure burst) Residence time of reacting material is 

reduced (less violent TR events) 

Heat path-heat conductors Lowers temperature exposure to adjacent 

cells 

Thermal management system (e.g. cooling 

plates/emergency cooling) 

Heat removal through cooling can delay or 

avoid propagation 
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Mitigation strategy Effect towards TP 

Oxygen starvation (e.g. overpressure 

valves with limited back-mixing) 

Fast removal of the exhaust gases (e.g. 

> 40 l/sec @ 50 mbar) 

Limited re-entrance of oxygen from outside  

Inert gas battery system (e.g. pressure 

compensation element-breathable pack) 

No ingress of oxygen from battery 

environment 

No additional oxidation after TR 

No contamination/water vapour can enter 

battery during normal operation (no 

condensation) 

Drawback: sealed battery housings would 

require thick walls, which makes this option 

not viable 

The use of non-flammable electrolytes constitutes, in principle, an efficient approach 

towards TP mitigation. However, experiments performed in 20 Ah pouch cells using the 

wax based implantable device could not validate this approach10. Two cells, one having 

standard electrolyte, and another one having an electrolyte denoted as non-flammable, 

developed into TR with smoke and fire. Actually the cell containing the non-flammable 

electrolyte showed TR at a shorter time (20 min compared to 1.5 h) and produced higher 

temperatures (350 °C compared to 260 °C) than the cell containing the conventional 

flammable electrolyte. These results demonstrate that the impact on safety performance 

of using electrolytes optimised with respect to flammability has to be evaluated carefully. 

It needs to be mentioned that non-flammable electrolytes may be problematic when 

fluorine is a main constituent to protect against (external) fire based on two aspects: i) 

extra HF gas being released and ii) fluorinated organic compounds have a potential to 

produce more heat during TR compared to typical organic compounds used in Li-ion 

batteries (e.g. comparing enthalpy of formation: 2 LiF vs. Li2O).   

In general, larger distance between cells (with or without insulation 

materials) leads to lower temperatures for the neighbouring cells in 

case of TR15. Direct contact between cells nearly assures propagation3
.
 

As a general rule, the spacing/distance between the cells is inversely 

proportional to the effectiveness of heat propagation path3. Therefore, 

one design parameter of relevance is the space gap between the 

cells. However, if a major heat transfer occurs via infrared radiation at 

high temperature, air-gap may not be effective. For 18650 cells based 

on LCO chemistry results were presented9. In the case of 1s10p 

arrangement complete propagation was still observed despite the space 

introduced between the cells. However, a significant impact was observed for the 10s1p 

arrangement. In this case no propagation was observed, whereas when no spacer was 

used propagation TP was observed in some cases. Initiated cell reached temperatures 

above 600 °C and neighbouring cells remained below 300 °C without going into TR. The 

air gap introduced with this design allowed for heat to dissipate quickly, eliminating the 

risk of TP.  

The use of heat sinks has also been presented9. 5 pouch cells (3 Ah, 

LCO) were arranged in a small string/module. One of the cells situated 

in the exterior of the module was initiated into TR by nail penetration 

along the longitudinal axis of the cell. The effect of aluminium or copper 

spacers between the cells was studied. When no spacer is used, full cell 
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to cell propagation was observed after just over 1 min, with temperatures approaching 

700 °C. The addition of aluminium spacers showed limited propagation in the string, in 

the case of using 1.6 mm spacer there was visible propagation between the initiated cell 

and its neighbour, however 3.2 mm spacer inhibited any propagation. When using a 

significantly thinner spacer (0.8 mm) complete propagation through the module was 

observed  4 min after TR initiation. In the case of using a copper spacer instead of 

aluminium, similar results were obtained. On this set of experiments the cumulative heat 

flux was measured leading to the following values:  

Cell with no spacer = 98 kW/m2 (No TP), cell +0.8 mm Al spacer = 27 kW/m2 (No TP), 

cell +0.8 mm Al spacer = 27 kW/m2 (TP), cell +1.6 mm Al spacer = 15 kW/m2, cell + 

3.2 mm Al spacer = 11 kW/m2 (TP).  

Comparison of 2 interstitial heat sinks was done by a presenter3: aluminium interstitial 

and vaporising interstitial (composed of highly conductive carbon fibre wick). This 

comparison was carried out on a cylindrical cells (LG MJ1) based module. The vaporising 

interstitial option brings a 19 % improvement in the weight (Wh/kg). TR was initiated 

using 3 initiation methods (interior, top and bottom heating) leading to a maximum 

increase in temperature of 40-63 °C and no propagation through the module.  

In principle any insulation material needs to be: 

● compressible (supporting dimensional changes of the cell) 

● sufficiently tough 

● in shape also when exposed to high temperatures 

● stable, without contributing to the decomposition reaction 

(e.g. does not contain organic matter) 

● light and relatively thin 

Intumescent materials (which swell as a result of exposure to heat) are typically used 

in passive fire protection (help avoiding convection and provides insulation). Some design 

parameters of intumescent materials are: activation temperature (150 to 350 °C), 

uniaxial or multiaxial expansion, factor of volume expansion (3x to 15x) and type of 

product (mat, film or coating). The use of intumescent materials seems to be a promising 

solution15.   

The effect that the insulation material thickness has on the TP was also investigated 

using Openmodellica12. Modelling results indicate that when no spacer is used, complete 

cell-to-cell propagation occurs; however in the modelled situation an only 1 mm thick 

mica sheet is able to stop the propagation.   

The effect of different firewall thicknesses was investigated: 0 (no firewall present), 5, 

10 and 20 mm. For the lowest thickness tested the temperature reached by the 

neighbouring cell falls just below the 100 °C limit set after 20 min of TR initiation. 

Increasing the wall thickness results on lower cell temperatures as can be anticipated.  

A similar experiment was conducted by another presenter on a small module (2s1p) with 

2.5 Ah 18650 cells based on NCA chemistry11. Nail penetration was used as initiation 

method. An isolation plate was placed in between the two cells along with the external 

cell connectors. Temperatures > 400 °C were recorded for the initiated cell, with almost 

no temperature rise for the neighbouring cell, demonstrating the effectiveness of the 

isolation plate.  

When using a 1 mm heat shield17 (silicone-based rubber) the temperature of 

neighboring cells was reduced from 600 °C to 200 °C after 30 s of heat exposure to an 

initiated cell. Due to its elasticity, this type of heat shield may be integrated in the gasket 

for the overpressure release channel. 
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An example where several mitigation strategies were implemented was presented on a 

65 cells module (13P5S)3 having a total 37 Ah capacity: 

 Aluminium interstitial heat sink to minimise the side wall rupture  

 A mica paper sleeve on each cell to avoid cell to cell contact (0.5 mm spacing) 

 A 12 A fusible link to individually fuse cells in parallel 

 Ceramic bushing lining cell vent opening to protect adjacent cells from TR ejecta 

 Flame arresting vent ports to provide tortuous path with flame arresting screens  

The design presented renders a 1.4 parasitic mass factor. Attempts to drive TR with a 

bottom cell heater were unsuccessful, and cells could only be heated up to < 100 C as 

heat generated from trigger cell is quickly dispersed and shared amongst the other 

adjacent cells.  

Design strategies at module level can also be implemented, in order to avoid module to 

module propagation (e.g. MICA plates between modules)16.  

In another study7 a symmetric part of a battery pack was simulated via finite-element 

method (FEM) in COMSOL and fire dynamics simulator (FDS). A firewall material 

between modules was considered and 1 mm Al-plate cooling plates on one side of the 

cell. The cell used for the calculations was an EiG 7 Ah carbon/LFP pouch cell [42]. The 

protection/mitigation strategies implemented by cooling plates every 2 cells, 

appropriate cell spacing, cooling-forced convection and use of fire walls between modules 

hinders cell-to-cell propagation. However, the model does not consider heat transfer 

through the electrical connections between the battery cells, which can have an impact 

on the cell-to-cell propagation.  

An Emergency Cooling Concept was presented17 that uses 

pressurised CO2 (probable medium of future mobile air conditioning 

systems) when a cell becomes overheated [43]. This concept was 

proven to operate successfully on a stack of 4 pouch cells (4 Ah per 

cell). However it is a rather complex system. 

 

 

 

From a practical point of view, three EVs types of packs were presented and their 

strategies towards TP were discussed16: Tesla Model X, Chevrolet Bolt and Mitsubishi 

Outlander PHEV. The Tesla Model X battery, composed of 18650 cylindrical cells, uses 

polycarbonate isolation stripes (0.3 mm) and a 1 mm cooling pipe between the cells 

within each module. Also 15 fluorosilicone venting plugs (530 mm2) to force venting out 

towards the sides of the battery pack are in place. The Chevrolet Bolt uses a 2.1 mm 

compression pad/foam and a 0.5 mm aluminium cartridge cover between the cells and 4 

pressure equalisation and venting membranes (289 mm2) in the pack to direct the 

venting to the sides (between the doors). Finally, the Mitsubishi Outlander uses 2.3 mm 

spacers between the cells and 3 pressure equalisation and venting membranes 

(72 mm2). 
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Session 5. Cost and performance penalty of mitigating thermal 

propagation 

Considering the risks associated with thermal propagation in large batteries, it seems 

reasonable to introduce measures or functions for mitigating thermal propagation. 

However, this unavoidably comes with a direct cost and performance penalty (e.g. in 

terms of weight, volume and cost of the added component, higher assembly cost due to 

increased system complexity) as well as an indirect cost (e.g. lower energy density of the 

battery system leading to lower range of an EV due to a fixed available volume; higher 

system complexity might also lead to more frequent failures and higher effort for 

repairs).  

In modern battery systems many components integrate multiple functions (e.g. a 

separator between cells could contribute to heat conduction, but also to compensation of 

cell expansion or mechanical integrity). This makes it more difficult to assign a specific 

penalty to the function contributing to mitigation of thermal propagation. Further-as also 

discussed in Session 4-typically a set of functions at different levels of the battery is 

applied for mitigating risks linked to thermal propagation, which further complicates the 

definition of a specific cost for mitigation of propagation.  

In the workshop, examples for the measures implemented in different currently available 

electric vehicle packs utilising cells with different casing were given16: a certain distance 

between adjacent cells (with or without additional filler material such as polycarbonate or 

a compression pad from foam) was found in all shown cases. Also between modules and 

between pack and vehicle there is the option of putting an additional insulating layer. A 

simple calculation18 assuming prismatic cells with dimensions x, y, z, a uniform distance 

between cells, d, and a cell-level volumetric energy density, σcell [Wh/m3], results in the 

effective volumetric energy density σeff of: 

σeff =  σcell  
𝑥 𝑦 𝑧

(𝑥 + 𝑑)(𝑦 + 𝑑)(𝑧 + 𝑑)
 

Assuming reasonable dimensions for a prismatic cell e.g. x = 20 cm, y = 10 cm, 

z = 5 cm, Figure 6 shows the dependence of volumetric energy density on distance 

between the cells. It becomes immediately clear that introducing a distance between cells 

leads to a relevant reduction of energy density and therefore has to be carefully balanced 

with safety requirements. 

 

Figure 6. Normalised volumetric energy density vs. cell to cell distance (assuming prismatic cells 
with dimensions of 20 cm x 10 cm x 5 cm) [own calculation] 

                                           
18 In the calculation, one distance d per cell is assumed in all direction (i.e. this might not be representative for 
the edges of a real module or pack). 
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Further, venting strategies for different packs were compared (e.g. wrt. number of vent 

openings and overall venting cross-section). 

Several concrete examples for additional cost were mentioned: the cost of cell to cell 

ceramic insulation material amounts to about 10 % of module cost excluding cells (15 % 

for intumescent material). The overall additional cost for the mitigation measured in the 

Tesla Model X are estimated to about 15 % of housing frame cost at pack level. 

It must be concluded that the right balance between acceptable level of risk and cost for 

mitigation measures must be sought specifically for every application. For this purpose it 

is crucial to perform a thorough analysis of safety risks (e.g. applying FMEA) and select 

the most suitable risk mitigation measures (see Session 4) potentially at different levels 

(cell, module, pack and beyond).   
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Session 6. Impact of avoiding thermal propagation on the current 

safety testing landscape 

Battery systems can be designed to avoid thermal propagation by containing failure of 

one cell to a 'graceful failure' at a certain cost. Assuming that a test is available that-once 

passed-reliably indicates prevention of thermal propagation in a certain battery, one can 

ask if other safety tests might become obsolete.  

It should be noted that thermal propagation testing is addressed in an increasing number 

of standards (e.g. SAE J2464 [20], UL 2580 [29], UL 9540A [44], UL 1973 [45], IEC 

62619 [21]), but no consolidated approach has been developed yet. Several standards 

specifically show a shift of focus from prevention to measurement and reduction of 

severity. Nevertheless, it seems reasonable to speculate about having a fit-for-purpose 

thermal propagation test available (e.g. for a certain type of 

application/chemistry/design). Under this assumption, it was the ambitious (and partially 

provocative) target of this workshop session to assess if some battery safety tests which 

are currently typically performed might become obsolete. 

Based on the presenters' assessment of the current standardisation landscape(8,19), in 

order to have a robust TP test, which covers credible worst-case scenarios, more work is 

needed on:  

 The selection of location of trigger cell  

 The choice of method to initiate thermal runaway in trigger cell 

 The role of the energy introduced by each initiation method 

 The detection of TR 

 The pass/fail criteria 

 The handling of emitted gases  

 The number of test repetitions for statistical validity 

It was stated that 'most experts admit that a single cell failure, while highly improbable, 

cannot be completely eliminated' and current safety design efforts and measures aim at 

reducing its severity8.  

While no concrete suggestions were made for battery safety tests that will not be 

required any more if a battery pack is tolerant to a single cell TR, it was suggested that8: 

 It might be possible to reduce levels of acceptance testing, such as: 

– Incoming inspection 

– Leak testing 

 Less attention might be required to efforts aimed at reducing the probability of a 

cell failure, such as: 

– Less frequent manufacture inspection 

– Audits of production line 

– More accepting of cell design modifications 

 A relaxation of installation requirements of stationary energy storage in buildings  

No agreement was reached on these suggestions, though, and several presenters 

showed divergence with it. Further work on the definition of fit-for-purpose propagation 

tests and a better understanding of the impact of verified battery pack designs that avoid 

thermal propagation is required. The development of advanced diagnostic tools for non-

destructive design verification can help loosen the requirements at pack level.  

                                           
19 T. Timke (Solarwatt) presentation: "Current and future propagation tests and the embedding in product 
safety". Online Access: https://ec.europa.eu/jrc/sites/jrcsh/files/thomas-timke_current-future-propagation-
tests-product-safety_.pdf  

https://ec.europa.eu/jrc/sites/jrcsh/files/thomas-timke_current-future-propagation-tests-product-safety_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thomas-timke_current-future-propagation-tests-product-safety_.pdf


 

34 

Conclusions and recommendations  

It is common understanding that a severe single cell TR failure in a battery system, while 

rather improbable, cannot be completely eliminated. Nevertheless there is a clear need 

for reliable batteries and components ('carefree solution'). As a consequence, such 

scenarios should be addressed when evaluating battery safety. One approach for 

assessing related risks further is a thermal propagation test. 

Below a summary of conclusions and recommendations can be found based on the 

discussions taken place at the workshop: 

 Definitions and terminology  

There was general agreement about the need for a harmonised definition of 

thermal runaway. Possible criteria for such definition include: temperature 

increase rate, occurrence of venting, fraction of converted energy of overall cell's 

chemical energy content. A more detailed understanding of the mechanisms of 

thermal runaway might make also feasible to have several sub-definitions for 

discriminating between different types of thermal runaway. 

 Thermal propagation testing and standardisation needs 

As there is no single, clearly defined single cell TR failure scenario, it seems most 

useful to develop a thermal propagation test of general robustness versus a single 

cell thermal runaway test. No reliable and practical method exists to create on-

demand internal shorts in Li-ion cells (single cell failure) that produce a response 

that mimics field failures. Heating is the initiation method suggested in most 

standards, but at the same time there is a potentially strong influence of the 

utilised initiation method on the outcome of the TP thermal propagation test. 

Therefore the selection of a suitable initiation method is crucial (e.g. 'typical 

credible and reproducible thermal runaway initiation' is required in Sandia 2017-

6925 [46] and the 'worst case credible thermal runaway event' in NASA JSC 

20793 [47]). Besides the scenario starting for a single cell failure, other scenarios 

include multiple cell failure (due to e.g. BMS failure, mechanical crash), and the 

TR propagation from such scenario may be more difficult than from a single cell, 

however, propagation protection and testing may be important. 

There is agreement that further pre-normative research is required to develop fit-

for-purpose testing methods and standards. In this context there is also the need 

to address the question on which level (cell, module, pack, complete product) a 

test can and should be performed in order to provide representative results for 

assessing safety in the actual application. 

 Testing parameters, comparability and reproducibility of testing 

There has been identified a wide variability in the pass/fail criteria requirements in 

various standards (IEC 62619 [21]: no fire outside the system, VDE AR 2510-50 

[48]: no fire, no explosion, no leakage, SAE J2464 [20]: no pass/fail Criteria, UL 

1973 [45]: no fire outside), which does not favour comparability of testing.  

Another important consideration concerns the significance of the outcome of a 

thermal propagation test: whether propagation occurs depends mainly on the 

difference between heat introduced in and heat removed from a neighbouring cell. 

From a statistical point of view, this is a difficult situation as a relatively small 

change in heat flow (in or out) can change the test outcome. Consequently, it 

must be evaluated carefully how often a test needs to be repeated to receive a 

reliable test result and thereby a relevant confirmation of a certain level of safety. 

Even though many standardisation efforts have been on-going in the recent past, 

current standards still typically allow for different initiation methods and test 

details (e.g. location of initiation cell) are not always defined. Further work is 
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required to define standardised abuse testing methods regarding thermal 

propagation. 

 Gas and toxicity consideration 

More information on physico-chemical properties and behaviour of vented gas 

during thermal runaway and propagation are necessary. Such information is not 

only relevant for understanding the energy transfer during thermal propagation, 

but also to assess risks that e.g. first responders or firefighters would encounter in 

severe battery safety events. Other areas for further research are the impact of 

oxygen availability inside the battery enclosure and the effect of ignition of 

exhaust gases on thermal propagation. It still remains unclear if an external spark 

source should be applied during thermal propagation testing as spark sources are 

additional risk scenarios and impose additional technical hurdles, but may be 

representative of a realistic scenario. 

 Impact of aged systems 

It is a common challenge for product developers, that even shorter battery 

development cycles are required to be competitive in a fast changing market. At 

the same time the long-term reliability of offered products must be ensured. In 

battery abuse tests, big differences in test outcomes have been observed-while 

not consistently-between EOL and BOL cells. Therefore thermal propagation 

testing seems also advisable on aged systems also in view of potential second use 

scenarios. On the other hand, such tests are difficult to realise within the rather 

short development cycles and lead to extra costs. 

 Simulation and modelling 

Progress in modelling has made simulation of abuse testing more representative 

of real tests and thereby more relevant. Modelling efforts can support thermal 

propagation testing (e.g. for selection of an initiation cell). 

 Early detection tools  

There is a need for more accurate and faster early detection tools, which could 

allow control of certain safety events at an even earlier stage (i.e. before thermal 

runaway occurs). Further research efforts in this direction seem justified and 

promising. 

 Mitigation approaches 

There is a general belief that some cathode materials are 'safer' than others; 

however an overall safety assessment is required.  

Solid state batteries (SSB) may change the game with respect to safety: as there 

is no longer any liquid flammable electrolyte. However, rapid reactions are 

favoured between sulphur and lithium (candidate materials for SSB) and other 

hazards will become apparent, such as fusion of cells, hindered thermal energy 

dissipation, etc. so the risk of TP might not be fully eliminated 

Many other developments also might help reducing the consequences or 

eliminating the actual occurrence of TR in conventional LIBs in terms of 

electrode/electrolyte composition, separator characteristics, use of thermally 

resistant materials, etc. In this context, it might be considered unfair requiring TP 

testing for 'safe' cells, therefore an exception for benign cells is suggested: if TR 

cannot be initiated ('no catastrophic failure mode'), this should be considered as a 

positive outcome of the test (e.g. several initiation methods could be defined, if 

none lead to TR, test is passed).  

The mitigation of risks related to thermal propagation requires a holistic view of 

cell, module, pack and application. Defining measures on one level-independent of 

the other levels-may lead to high cost and/or limited increase in safety. 
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Nevertheless for the near and medium term avoiding thermal propagation will be 

a key challenge for making Li-ion battery systems safer and the development of 

suitable tests is of high importance. 
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https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/initiation-of-thermal-runaway.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/initiation-of-thermal-runaway.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/matthew_keyser-nrel-nasa_internal_short_circuit_instigator_in_lithium_ion_cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/matthew_keyser-nrel-nasa_internal_short_circuit_instigator_in_lithium_ion_cells.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/eric-darcy-nasa-lessons-learned-passive-thermal-runaway-propagation-resistant-designs-spacecraft-batteries.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/eric-darcy-nasa-lessons-learned-passive-thermal-runaway-propagation-resistant-designs-spacecraft-batteries.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-calorimetric-electrochemical-methods_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-calorimetric-electrochemical-methods_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/magnus-rohde_safety-studies-li-ion-cells-calorimetric-electrochemical-methods_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/concepts-materials-thermal-propagation-prevention.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/concepts-materials-thermal-propagation-prevention.pdf
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DAY TWO (9 March 2018) 

Meeting room: building 325 – 101 (1st floor) 

Session 5. COST AND PERFORMANCE PENALTY OF MITIGATING THERMAL 

PROPAGATION 

8꞉30-9:00 

 

 

 

 

 

9꞉00-9:20 

 

 

 

9:20-9:40 

 

 

9:40-10:10 

Session Chairman and Keynote Presenter: W. Prochazka, Product Manager, 

Global Battery Management Team, AVL LIST GMBH, Austria. COST AND 

PERFORMANCE PENALTY OF THERMAL PROPAGATION MITIGATION AND 

VENTING MEASURES (30 min) 

Rapporteur: T. Kosmidou (JRC, C.1. Energy Storage Unit) 

 

 P. Kritzer. Senior Application Manager. E-Mobility. Freudenberg 

Automotive Sales.  

PREVENTING THERMAL PROPAGATION – APPROACHES & EFFORT TO 

IMPLEMENT THEM IN A BATTERY SYSTEM (20 min) 

 R. Hettrich. Key Account Manager. CTCadvanced GmbH.  

PROPAGATION TESTS ON LITHIUM ION BATTERIES FROM THE 

PERSPECTIVE OF AN ACCREDITED TEST LAB (20 min) 

 Open discussion (30 min) 

 

10:10-

10:40 
Coffee break (building 325 hall) 

Session 6. IMPACT OF AVOIDING THERMAL PROPAGATION ON THE CURRENT 

SAFETY TESTING LANDSCAPE  

10:40-11:10 

 

 

 

 

11:10-11:30 

 

 

11:30-11:50 

 

11:50-12:20 

Session Chairman and Keynote Presenter: D. Doughty, Battery Safety 

Consulting Inc., Albuquerque, USA. THE LANDSCAPE OF THERMAL RUNAWAY 

PROPAGATION TESTING (30 min) 

Rapporteur: F. Di Persio (JRC, C.1. Energy Storage Unit) 

 

 T. Timke, Solarwatt.  

CURRENT AND FUTURE PROPAGATION TESTS AND THE EMBEDDING 

IN PRODUCT SAFETY (20 min) 

 N. Lemmertz. Karlsruhe Institute of Technology (KIT), Germany 

KIT LI-ION BATTERY RESEARCH – THERMAL PROPAGATION (20 min)  

 Open discussion (30 min) 

 

12꞉20-13꞉20 Lunch break (building 325 hall) 

13꞉20-15꞉30 

 

Open discussion for identifying key points and future steps: 

 Summary of each session 

 Open discussion  

Conclusions and closure of meeting 

15꞉30-16꞉00 Coffee break (building 325 hall) 

16꞉00-16:30 Lab visit (optional for interested participants) 

   

https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-performance-penalty-thermal-propagation-mitigation-venting-measures.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-performance-penalty-thermal-propagation-mitigation-venting-measures.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/wenzel-prochazka-cost-performance-penalty-thermal-propagation-mitigation-venting-measures.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/preventing-thermal-propagation-battery-system.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/preventing-thermal-propagation-battery-system.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/daniel_doughty_battery_safety_consulting_the_landscape_of_thermal_runaway_propagation_testing.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/daniel_doughty_battery_safety_consulting_the_landscape_of_thermal_runaway_propagation_testing.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thomas-timke_current-future-propagation-tests-product-safety_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/thomas-timke_current-future-propagation-tests-product-safety_.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/kit-li-ion-battery-_thermal-propagation.pdf
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Annex 2. List of participants 

 

  

Last Name First Name Affiliation Origin Business 

Börner Markus 
University of Münster, MEET Battery 

Research Center 
Germany Research 

Chanson Claude RECHARGE France Industry 

Coman Paul Independent Researcher Denmark Research 

Darcy Eric NASA-Johnson Space Center, Houston USA Research 

Dejanovic Nenad AVL LIST GMBH Austria Industry 

Doughty Daniel Battery Safety Consulting Inc.  USA Consulting 

Döring Harry 

Zentrum für Sonnenenergie-und 

Wasserstoff-Forschung Baden-

Württemberg (ZSW) 

Germany 
Testing 

body 

Geppert Michael TÜV SÜD Battery Testing GmbH Germany 
Testing 

body 

Gerard Matthias CEA Tech France Research 

Golubkov Andrej Virtual Vehicle Austria Research 

Gutierrez César CIDETEC Spain Research 

Hettrich Ralf CTCadvanced GmbH Germany 
Testing 

body 

Keyser Matthew 
National Renewable Energy Laboratory 

(NREL) 
USA Research 

Kolp Elisabeth Technical University of Munich (TUM) 
 

Germany Research 

Kritzer Peter Freudenberg Sealing Technologies Germany Industry 

Larsson Fredrik RISE Research Institutes of Sweden Sweden Research 

Lemmertz Nicolaus Karlsruhe Institute of Technology (KIT) Germany Research 
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Last Name First Name Affiliation Origin Business 

Middendorf Claus 
Automotive and Aerospace Solutions 

Division 3M, Deutschland GmbH 
Germany Industry 

Orendorff Christopher Sandia National Laboratories USA Research 

Prochazka Wenzel AVL LIST GMBH  Austria Industry 

Rohde Magnus Karlsruhe Institute of Technology (KIT) Germany Research 

Scharner Sebastian BMW AG Germany Industry 

Timke Thomas Solarwatt GmbH Germany Industry 

Weydanz Wolfgang Robert Bosch GmbH Germany Industry 

European Commission Participants 

JRC.C.1, Petten, Netherlands 

Adanouj Ibtissam 

Bielewski Marek 

Brett Lois 

Di Persio Franco 

Kosmidou Theodora 

Kriston Akos 

Lebedeva Natalia 

Napolitano Emilio 

Pfrang Andreas 

Ruiz Ruiz Vanesa 

Steen Marc 
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