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Objectives

Technology

Demonstrate and evaluate the application and
measurement technologyin the devel opment
process

Understanding

Fundamental understanding of the particle
formation, composition, size distributionand
transportand theimpact on the measurement
procedure + demonstrate usability of model

Procedures

Robustandreliable measurement procedures for
particles down to 10 nmand verified underreal
driving conditions
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Pump Semi-volatile partide removal

Unstable w—» Evaporation =—p % Stable

* Redesign/modify existingand established solid particle counting systems for laboratory and on-
road measurements to lower the minimum particle size measurement limitto 10 nm

* Adaptsemi-volatile particle removal system to remove non-solid particles while allowing
penetration of solid particlesin 10-23 nmrange

* Demonstrate and evaluate the applicationand measurement

* Integrate a modified CPC and a CSinto the solid particle counting systems
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» Startingpoint: Two proven CPC models for laboratory and PEMS applications (Dgg = 23 nm)
* Goal:achieve Dy < 10 nm

Technology: highlights

* The CPCs were calibrated and validated
* Forvalidation thermally conditioned flame soot particles were used
e Result: showed 50 % detection efficiency at 10 nm according to ISO 27891 requirements

e A catalyticstripper was calibrated with solid particle aggregates.
* Goal: maximize system-measured solid particle penetration for 10 nm and below
* Penetration efficiency needed to increase
* > 60% was achieved (initial target was set to > 50%)

e Particle countingsystem calibration procedure was performed
* Including Particle Count Reduction Factor (PCRF) calibration for both systems

* MGA validated against measurements for PSD and chemical characterization

* Offers guidance onthe role of dilution ratios, dilution pipe lengths, in-cylinder inhomogeneities, and
surface vs bulk compositions
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Technology: preliminary results

Catalytic stripper (CS) for SPN-PEMS

-, pEMS
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Solid particle penetration: Semi-volatile particle removal:
» 10-15% improvementinsolid particle penetration Satisfy well beyond the regulatory requirements of >99% semi-volatile
» 65-75% solid particle(silver) penetration at 10 nm size particle (tetracontane) removal (> 10* #/cm3) at30 nmsize.

» Meet the ambiguoustarget of 60% penetrationevenat8 nm.
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Understanding: particle characterization

» Thorough physico-chemical characterization of

the smallest particles needed for better
understanding their influence on the particle
measurement through the model guided
application optimization of the newly
developed PEMS

Use of a single cylinder engine @ Bosch as
particle generator ... generate a wide variety of
particles by testing various engine regimes

Build an extensive database on size-dependent
particle  structure, morphology, chemical
composition ... possible further use in engine
optimization through the MGA ... interest for
other GV projects

...: pEMS
.- 4Nano

Laboratory single cylinder test engine

) BOSCH

Invented for life

In-situ measurement of particle size and
volume fraction - LI

—
Tailpipe and engine sampling of particulate
matter ‘a T
D ACCELERATED
Ex-situ physicochemical characterisation
Scientific

Particle growth and transport model -

(T
cmoL th
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Objectives of LIl measurements:

Measuring in real time and in situ the evolution
of the LIl signal in the exhaust line: variation of
the soot volume fraction.

Realtime control of engine soot emissions
for different engine setpoints

Comparison with other techniques: SMPS-EEPS
limit of detection ? ‘ A
smallest size S~

Remark: LIl signal is assigned to carbon
(metallic particles, oil, condensable species etc.
do not contribute to the signal)
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Understanding: measuring real-time and in-situ

Variation of LII signal with engine setpoints

D Pmi=5, 8,10 bars; S01=-270 O $01=-270, -305, -311; Pmi=10 bars

Variation of LIl intensity: soot volume fraction Variation of LIl decay-time: « mean soot diameter » indicator
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Sampling line

Dekati FPS 4000

I=:-PEMs
-4Nano

Nanoparticle Aerosol
Generator Palas
GFG 3000

3"'4 Sampler
% | . B! TSI Nano
oy | Moudi
Particle Classifyer | TSI DMA Horiba SPCS
~Sizer . t = 2100
e’
TSI EEPS SMPS Sarmoler
T | ﬂ
|
l !: TSI CPC P TSI NAS o

Q. PN | ™ FL w hl’?d
‘ 10 nm 1 =8 2 I 3 10nm Lab.
— ="y System with CS

EEPS =Engine Exhaust Particle Sizer PFl = Port Fuel Injection

DMA = Differential Mobility Analyzer
FPS =Fine Particle Sampler GDI

= Gasoline Direct Iniection SMPS = Scanning Mobility Particle Sizer

» Single cylinder engine
» Displacement: 449 cm?®, £=12.5
» GDI and PFI mode possible
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Understanding: ex-situ particle characterization

Size-selective sampling and off-line analyses
by mass spectrometry, electron and atomic force microscopy, Raman spectroscopy
+ advanced statistical analysis
Chemical composition, structure, morphology

“normal operation”

2 2 2 Vergréierung = 100.00 K X Signal A = InLens
Scientific

Raman map

@
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AFM and TERS structural analyses - 4Nano

AFM 3D/ 2D topography of
collected PM (18-10 nm)

Zonel . _ Zone?2
Particle1: height 10nm
width<48 nm ) . TERS map
— Particle2:height6 nm (G&D bands)
High resolution width<43nm

AFM topography
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Mass spectrometry techniques

Two step Laser Mass Spectrometry (L2MS)

Time-of-flight mass spectrometer . CO n tl‘ 0 | Ied fl’ ag men tat| on
Towards the MCP
Ultra-sensitive to PAHs
(attomol)
electrode ____:::;f_?t _____ desorption plume

Selective (laserionization

DesorPtion laser beam ! >/. :.) ] . at 3 WavelengthS)
extraction zone e v &yFr- - -~ e
Liquid-nitrogen-cooled

Delayed orthogonal sample holder
ionization laser beam

Secondary lon Mass Spectrometry (ToF-SIMS)

High fragmentation

ions 1 " particle High mass resolution
: o
*‘-b (Bi,") . Mapping,depth

profiling
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Chemical composition ... selective ionization
R2PI at 266 nm

Spectradominated by aromatic species
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Chemical composition ... selective ionization
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SPI at 157 nm (7.9 eV)
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Intensity, mV
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Spectracontain other chemical families SPI at 118 nm (10.5 eV)

Chemical composition ... selective ionization
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Less obvious difference for smallest particles ... need to use statistical analyses to differentiate
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* The combination of L2MS, SIMS and PCA allows determination of detailed molecular level surface
chemical composition of soot particles.

Understanding: conclusions

» The use of size-selective sampling allowed us to chemically characterize surface chemistry of particles
down to 10 nm.

 Identification of key chemical markers, coupled with powerful PCA statistics, allowed discrimination of:
1 Gasoline-specific (PAHs, phenol, nitro-phenol)
a Lubricant-specific (Hopanoids, steranes and cycloalkanes)
» Engine-specific (metals and metal oxides)

» By identifying marker species, we have clearly discriminated particles by source, particle size and
engine regime
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Regime discrimination ... SIMS+PCA ::* ANano

= : 400 |
A |mmm Obtimal chuise SIMS
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100
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Source discrimination ... SIMS + PCA -2 ANano

mm Low Air/Fuel ratio
A B Heavily used N ool 4 - SIMS
a

® 180-100nm . . .
¥ 100-56nm 1sol Oil contribution
A 56-32nm
2 3832nm —\ /

100 -

4 18-10nm Y
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Size-dependent chemical analysis

Particle benchmark -"Optimal uphill"

Organic Carbon Elemental Carbon Ash Sulphur
1e3 1e2 1e2 1e1

30 I 180-100nm

25 I 100-56nm
S B 56-32nm
© 2.0 - . .
g 18-100m ‘ Clear trends in size and source
2w - have been identified for:
2 0.5 i i 1

0.0 :

“Low Air/Fuel ratio” . “Heavily used”
_ me= 180-100nm X % .

3l = aesIr | R ' * Cycloalkane and bicycloalkane fragments (C H,, 3) -
[ =18nm 1.5 . . .
5 | markers of lubricating oil
D el il

. oo — * Polycyclicaromatic hydrocarbons (PAH) - building blocks

“Optimal cruise” “Heavily used” .

. . of soot particles
g’ : Size variation by chemical category delivered as key
- 2 input to the Model Guided Application (U.Cam + CMCL)
< 1 1

Combustion of the oil film Combustion of oil droplets
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Particle size distribution

Model guided application (MGA)

Vehicle RDE
o Catalytic
[ Dilution ] [ StripperJ L CPC J

T

[e31sAUd

|e331q

A

g Fast-response surrogates

—[ External vehicle/system-level simulators }—

e MGA combines physico-chemical and statistical algorithms to simulate the particulate emissionsin IC
engine driven vehicles, to offer:
v" Sensitivity of PM and PN to operating conditions in IC engines and vehicles

V' Particle size distribution, PM, PN, aggregate composition and morphology as a function of fuel characteristics,
engine operating modes, after-treatment and RDE attributes

v" Thermodynamic boundary conditions at various sampling points to reduce the need for measuring “everything’

(
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Physico-chemical simulation: fuel to tailpipe

HO,+HO,>H,0,+0,
H,0,+M=>0H+O0H+M
H,0,+HO,+H,
H,0,+H=0H+H.,0
H,0,+0=0H+HO,
H,0,+0H=H,0+HO,

Crank angle [degrees aTDC]

RON, MON, pathways WM Combustion, emissionsfll Particulates: PM, PN Particulates: PM, PN
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MGA components and relationship with

measurements .- 4Nano
@a Fuel In-cylinder Exhaust Tailpipe
. RON, MON, PR B o bustion, Particulates: PM, Particulates: PM,
Physico- e o
. pathways e 5 emissions PN 2\
chemical sovon-noso, | N | - ... - | | . -% | I | -

Simulation
Statistical | | Parameter Computational Validation
KLl algorithms| Fastimation Surrogates

Experimental data (engine test bench & vehicle)

Exhaust & Tailpipe
behind TC behind TWC | behind GPF Tailpipe

Fuelanalysis: Combustion & PN10 and PN23 analysis at various sampling positions along the exhaust PN10 & PN23in
. comp05|t'|on emissions: behind TC behind TWC behind GPF Iailipe CVS tunnel
- evaporation - pressure trace . Y (vehicle roller
curve analysis : z !_I: test bench)
- amount of - engine out = : _
K L Three-Way Catalyst Gasoline Particulate silencer
aromatics raw emissions (Twc) Filter (GPF)

Example for GDI engine
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Understanding: MGA to provide the range X Zﬁgﬂg

Exhaust Tailpipe

E Fuel In-cylinder
. RON, MON, g%iﬂ\ngogw Combustion, Particulates: PM, || Particulates: PV, |
Physico- .
. pathways o2 emissions PN PN
chemical o.ron=ro+o, | N | - ... | I " | N |
Simulation
. Statistical | | Parameter Computational Validation
LI_IJalgor'thmf estimation Surrogates
Diesel CIDI
engines GDI SI
engines

HCCI
engines

PFI SI
engines

Dual-fuel CNG-
Diesel engines

11/7/2018
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Understanding: modelling fuel to tailpipe

Inputs MGA Outputs
Fuel specifications o  SRM Engine Suite™: Particle population PM
SCRE & MCRE ICEs baIar?ce includes soot, ash, sulphates and

volatiles PN

Vehicles & drive .
s o kinetics™ reactor network to account for PSD
.Cyc es: o dilution and sampling » .
Operating conditions o  Validation of engine-out PSDs at multiple comp05|t|on
Loss transfer functions loads-speeds Sensitivities

o  Dilution and temperature thresholds based Surrogates
on the number density of solids and SOF

for measurement
components
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Understanding: guidance on inhomogeneities =:PEMs
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Soot mass [mg]|

PN [#]
50 5 5
1 ] 35 ” L
CMGL ! 10000
[~ [ R 30 ¢ 4
= 225 0.5 5000
_330 2 3 3
] §20 & &
u 20 =15 2 2
= 2
10
10 1 1
5 L
of o3 @ (o)
-100 -50 0 50 100 -100 -50 0 50 100 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Crank Angle [* aTDC] Crank Angle [° aTDC] r T

MGA offers ®-T plots as a function of the engine operating

conditions at various load-speed points
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Understanding: guidance on inhomogeneities

;‘: e MGA mapsthein-cylinderinhomogeneities in ®-T space with the
® 23 soot and NO, emissions

11 . . .

0 O-T plots of stochasticparcels at 4 stages in the engine cycle.

4 3 . . . .

N There are 2 bulk parcels (stoichiometric) and 10 wall parcels (rich).
2 * One parcel burnsatsparkand entersthe NO, zone. Mass is

11 .

o transferred fromthe unburned parcel into the burned parcel as

N e the simulation proceeds
® 2 e * Laterinthe simulation, the wall parcels burn and enter the soot

1 +-——g—— — — — — —

) v zone

i Rientiven * Soot precursors (coronene) formed in the wall parcels contribute

3 e conuring 75 CAD aTDC : . . :
R 5 { fotheimeeptionot pres to theinception of solid soot particles.

e ———- L Rttt

0 , . . as expands.

500 1000 1500 2000 2500 3000
T (K) MGA offers ®-T plots as a function of the engine operating

The parcels are coloured according to the soot mass within conditions at various load-speed points

them and thevalues are normalisedto 1 x 10™7 kg.
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Understanding: sensitivity to dilution

Example: Dekati sampling system kinetics: reactor network

Connection summary

T=623 K i
PRIMARY Primary Cold air

Ao Cold air (T=298 K) dilution air

C2 l C5 l
DILUTED

v c1 c3 c4 c6 c7

— R1 » R2 » R3 » R4 }——

R1 R2 R3 R4
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Solids and SOF sensitivity to dilution

Understanding: sensitivity to dilution

Aggregate size distribution over load-speed operation

1200 RPM 8 Bar 2500 RPM 8 Bar 0.5
107 -~ Experiment —30:1 (Baseline)
‘E — Simulation —60:1
£.10° —04F —120:1 1
'B —_
20 90t g 300:1
T 3 —600:1
% 102 o 2 0.3 ]
(3]
10° 0
10! 10? 103 10! 10? 103 = 02l |
S .
1200 RPM 2 Bar 2500 RPM 2 Bar %
10 10° 910 ]
|
E 100 10°
hd L
%D 0! 10" 10! 10° 10°
=10 102 d [nm]
o
10° 10°
10! 10% 10% 10! 102 103
d [nm] d [nm]
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Understanding: sensitivity to pipe length

c| .|

al el o ke cs\ L7 Size of R4 (pipe) can be varied easily.
N\ Effects on measured PN can be assessed.
0.7 109 ; ;
—Baseline (1 m) —Baseline (1 m)
0.6 —0.25 m —0.25 m
- —0.5m o —0.5m
0.5 2 m *, . 2 m
é —4 m 5 10%r —4 m
204 =,
H =
[75) =Y}
é 0.3 ;‘j
502 % o
o8]
0.1
0 10! 102 108 10300 10/ 107
d [nm] d [nm]
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Understanding: guidance - bulk vs. surface

MGA

...: pEMS
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M €asureme nts 0.9 SOF layer thickness 6\Iumber of primaries per aggregate
Organiccarbon Elemental carbon 0.15 50
El =
3500 350 0.1 . )
f £ - Elemental carbon in opposite
3000 300 . .
0.05 10 trend with soot mass fraction
2500 250
“':) jzzz jzz 0 1ot 102 103 0 10t 102 108 - SOF layerthickness matches
- d [nm] d [nm] organic carbon
1000 100 3 %10~12 Total SOF mass 1 Soot mass fraction
200 0 - Validateda surface
0 0 5 0.9 characterisation technique
e e - = using SOF layer thickness
2 E
g1 =08
0 0.7
10 10? 10° 10! 102 10°
d [nm)] d [nm]
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Understanding: MGA - dissemination

aoxco o

Model guided application for investigating particle number (PN) emissions in GDI
spark ignition engines

— e MGAona GDISlsingle cylinder
engine

e MGA maps in-cylinder
inhomogeneities in ®-T w.r.t. soot
and NO, emissions

e Sensitivity to dilution and

|||||I|||I|II||II|I|I|| temperature during sampling

e Size-resolved chemical
characterisation: bulk vs surface

e Draft manuscript prepared

e MGA on a GDI SI multi-cylinder
engine started

&
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Procedures: objectives

Recommendation for PN > 10 nm assessment...
... during engine development process ... during vehicle RDE testing

2]

ngine operating Testing
conditions protocols
stness ation &
evaluation robustness evaluation
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Procedures: preliminary results

Engine test bench Rollertest bench
behind TC tailpipe ;z?é- g\\g - 4,8E+11
- 12— . 10 —— |

1ow P fuel 3.5-10%? 73.5-10 J —-—  PN23, Tailpipe :z::::

- '
-==PN10, behind TC B | - . | 40E 11

, I L L . Y
===-PN23, behind TC o 3.010* [3.0-10% I 3,8E+11
—— PN10, tailpipe = | 35E+11
—— PN23, tailpipe I [-2.5-1012 [~2.5.1010 | 3,3E411

]

=T 3,0E411
- 2,8E+11
- 2,5E+11
b 2,3E+11
- 2,0E+11
L 1,8E+11
1,5E+11

[-2.0-102 | 2.0-10%

r1.5-102 [~1.5-10%

Integral PN | total dist. [1/km]

1.0-10? [1.0-10'°

Integral PN / total dist. [#/km]

- 1,3E+11
- 1,0E+11
- 0,8E+11
- 0,6E+11
L 0,3E+11
0,0E+11

speed [km/h]

["5.0-10'! [5.0-10°

0.0-10° —0.0-10°

Speed [kmih]
N8B BERERE

T T T T T T T
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [s]

Differences between...
engine and roller test bench, but relative trends are similar
individual test points (e.g. tailpipe and CVS), but “emission events” are similar
PN10 and PN23 show a comparable temporal behaviour, PN10 emission is simply higher

— Relative trends observed from engine test bench measurement are transferable to roller test bench
- New measurement system can be applied and handled like an established PN23 measurement system
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2 vehiclesonreal road

4 vehicles on chassis dyno

multi- cylinderengine (4, 2.0, 1/c, GbI)

single cylinderengine

A 4

Fundamentals/ Procedure for engine Procedure for vehicle
PN characterisation with: developement process RDE testing
- SEM.TEM e lie o  STawrmc e

LR

- AFM-Raman, TERS

- 13 _. 120 highway
—  ToF-SIMS, L2MS 3 z
_ L” - @ steady state “: 80 urban | Mmrmr l j l
z load step § e B | Y ¥
- AAC o AL
1000 2000 3000 4000 4] 1000 2000 3000 4000 5000 6000
engine speed [rpm] time [s]
single operating points Mini map, load steps, NEDC, WLTC & RDE cycle
WLTC & RDE cycle
vehicle 1: C-segment?: GDI engine: 14, 2.0l, T/C with GPF
vehicle 2: D-segment?: GDI engine: 14, 2.0l, T/C without GPF
vehicle 3: SUV-segment (Basis Euro5-6¢): GDI engine: 14, 2.0l, T/C without GPF
vehicle 4: B/C-segment (Basis Euro6d-Temp): GDI engine: 13/14, 1.0-1.5I, with GPF
Iproduction engine as basis, modifications on engine hardware & ECU calibration 2demonstrator vehicle (Basis EU6) with modified vehicle & engine hardware as well as modified engine calibration
Slide 34 PEMs4Nano - H2020 Grant Agreement #724145 11/7/2018




Conclusions

Technology

- Two systems (laboratory + PEMS) including subcomponents (e.g. CPC, CS) have been
modified for >10 nm measurements

- Laboratory system validated and in use since April 2018

- PEMS currently under validation

Understanding

- On-line/off-line multi-technique characterization of a wide variety of size-selected particles :
- for powerful discrimination protocols
- for extensive database of particle physical and chemical properties as input for MGA

- MGA aligned with measurements on the size-resolved surface (organic carbon) versus bulk
(elemental carbon) compositions.

Procedures

- PEMs4Nano lab system can be applied and handled according to PMP-recommendation
- MGA combining physico-chemical simulation and statistical algorithms to offer sensitivities
in particle characterisation as a function of RDE attributes
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