

Behaviour of M2 & M3 general construction in case of Fire Event (BMFE)

Smoke density and toxicity of materials

First approach: evaluation of R118 compliant materials

according to EN 45545-2 – requirement R22

Swift overview of the EN 45545-2

EN 45545 Part 2

- This part of the EN 45545 covers:
 - The product categories and the reaction to fire requirements for each of these categories.
 - The fire and smoke test methods depending on the necessary requirements.
 - The requirements for assemblies and non-listed products.
 - The rules and test particularities in relation with certain products and assemblies.

EN 45545 - 2: Requirements/test methods

Requirements/test methods

Design/Operation categories

Hazard Level (HL)

- How to determine the minimum safety level: HL?
 - Rolling stock design
 - Operation catergory

Y=3

4 operation categories: the basics

- 1: Vehicles operated on infrastructures where the railway vehicles can be <u>stopped</u> with minimum delay and in an area where safety is <u>always immediately accessible</u>.
- 2: Vehicles operated in <u>underground sections</u>, in tunnels and/or elevated structures, <u>with a possible lateral exit</u> and where there is a station or an emergency stop, accessible after a <u>short circulation period</u> and which offers a safety zone to passengers.
- 3: Vehicles operated in <u>underground sections</u>, in tunnels and/or elevated structures, <u>with a possible lateral exit</u> and where there is a station or an emergency stop, accessible after a long circulation period and which offers a safety zone to passengers.
- 4: Vehicles operated in <u>underground sections</u>, in tunnels and/or elevated structures, <u>without a possible lateral exit</u> and where there is a station or an emergency stop, accessible after a <u>short circulation period</u> and which offers a safety zone to passengers.

4 design categories

 A: vehicles constituting an automatic train that doesn't have crew members train for emergency procedures

D : double-decker vehicles

S : sleeper vehicles

N : all the vehicles (standard vehicles)

The essential goals of fire safety

Classification of Hazard Levels

	Design category						
Operation category	N: standard vehicles	A: vehicles constituting an automatic train that doesn't have crew members train for emergency procedures	D: double- decker vehicles	S: sleeper vehicles			
1	HL1	HL1	HL1	HL2			
2	HL2	HL2	HL2	HL2			
3	HL2	HL2	HL2	HL3			
4	HL3	HL3	HL3	HL3			

EN 45545-2: Smoke and Toxicity evaluation

Smoke density and toxicity measurement according to EN 45545-2 - summary:

Listed products

and

Non listed products > 0,2m²

EN ISO 5659-2: Horizontal smoke chamber

NF EN 45545 Annexe C: Testing methods for determination of toxic gases from railway products

25 or 50 kW/m² depending on end-use

Listed products

and

Non-listed products

 $\leq 0.2m^2$

EN ISO 5659-2: Horizontal smoke chamber 25 kW/m²

NF X 70-100 : Toxicity in a tubular furnace

600°C

First approach

In the frame of the BMFE working group, as a first approach, 6
materials tests have been conducted as per the EN 45545-2 R22*
requirement regardless of the end-use

- ISO 5659-2 smoke density :
 - Irradiation: 25 kW/m²
 - Measured parameters : Ds_{max}
- NF X 70-100 smoke toxicity:
 - Test conducted at 600°C
 - Measured parameters: ITC_{NLP} (CO, CO₂, HF, HBr, HCI, HCN, SO₂, NO_X)

^{*}requirement dedicated to small non-listed item, exposed surface < 0,2 m², interior use

Requirement

R22 requirement

Short name of requirement set (used for)	Test method reference	Parameter Unit	Maximum or Minimum	HL1	HL2	HL3
R22	T01 EN ISO 4589-2: OI	Oxygen content %	Minimum	28	28	32
	T10.03 EN ISO 5659-2: 25 kWm ⁻²	D _s max. dimensionless	Maximum	600	300	150
	T12 NF X 70-100-1 and -2 600 °C	CIT _{NLP} dimensionless	Maximum	1,2	0,9	0,75

Smoke Density measurement

ISO 5659-2 Smoke chamber

- The test is carried out in a chamber of 0.5m3 in volume.
- The specimen sits inside a small metal holder with one face left exposed (this ensures that it is a surface test only).
- The container is then placed inside the chamber below a cone heater in a horizontal position.
- The resulting smoke density / time curve is used to calculate the specific optical density figures
- Dsmax is the maximum specific optical density obtained within the 20 minutes test period.

Smoke Toxicity measurement

NF X 70-100 (tubular furnace):

Measure of the CIT_{PNL:}

- Deterioration of a quantity of material –
 (0,5 g) in a tubular furnace heated at
 600°C
- Test duration: 20 min
- The quantity of gas per gram of tested material is determined with different test methods (HPLC, IR, chimiluminescence)
- Gases measured out : CO, CO₂, HF,
 HBr, HCl, HCN, SO₂, NO_x

Smoke Toxicity measurement

- Calculation of the CIT_{NIP}
 - Reference concentrations of gas constituents

$$ITC_{PNL} = 1 \frac{g}{m^3} \times \sum_{i=1}^{I=8} \frac{Y_i}{C_i}$$

The combustion of 450 g of the material and gaseous effluents which disperse in 150 m³.

Composant gazeux	Concentration de référence [mg/m³]
CO ₂	72 000
со	1 380
HBr	99
HCI	75
HCN	55
HF	25
NO _x	38
SO ₂	262

Reference values are based on the l'*IDLH* (Immediate Danger for Life and Health), recognised as a limit for personal exposure to the gas component by NIOSH (National Institute for Occupational Safety and Health) (1997 version).

Samples tested

- 6 samples declared as R118 compliant by the end-users / manufacturer have been tested:
 - Floor covering sample A
 - Floor covering sample B
 - Seat covering backrest sample C
 - Thermoplastic sheet sample D
 - Multilayers product sample E
 - Multilayers product sample F

ISO 5659-2 test results

Smoke density measurement @ 25 Kw/m²

	Α	В	С	D	Е	F
Mass (g)	13	20	16	4	53	19
Mass loss (%)	69	74	2137	83	58	76
VOF4	1875	2488	2487	16	1427	701
Ds1.5	655	620	628	5	14	202
Ds4	545	>792	>792	4	>792	207
DS10	504	>792	>792	171	>792	198
Dsmax during the first 10 minutes of the test	670	> 792	> 792	174	> 792	215
Dsmax over the duration of the test 20 min	670	> 792	> 792	186	> 792	215

NF X 70-100 results

• Smoke toxicity measurement @600°C – ITC_{NIP} calculation

	Α	В	С	D	Е	F
CO (mg/g)	72,81	92,25	107,59	247,33	36,95	84,29
CO ₂ (mg/g)	1227,62	1298,81	1236,22	1554,67	1072,46	1491,62
HCI (mg/g)	135,53	91,13	60,19	9,86	1,53	6,63
HBr (mg/g)	NQ	NQ	NQ	NQ	0,6	NQ
HCN (mg/g)	NQ	NQ	6,18	3,66	3,52	2,45
HF (mg/g)	ND	ND	ND	ND	ND	ND
SO ₂ (mg/g)	0,75	0,9	NQ	7,52	NQ	2,87
NOx	NQ	NQ	3,2	NQ	NQ	NQ
ITC NLP	1,9	1,3	1,1	0,4	0,1	0,2

Opacity / toxicity evaluation

• Smoke / Tox classification – first approach :

Short name of requirement set (used for)	Test method reference	Parameter Unit	Maximum or Minimum	HL1	HL2	HL3
R22	T01 EN ISO 4589-2: OI	Oxygen content %	Minimum	28	28	32
	T10.03 EN ISO 5659-2: 25 kWm ⁻²	D _s max. dimensionless	Maximum	600	300	150
	T12 NF X 70-100-1 and -2 600 °C	CIT _{NLP} dimensionless	Maximum	1,2	0,9	0,75

	Α	В	С	D	E	F
ITC PNL	1,9	1,3	1,1	0,4	0,1	0,2
Dsmax during the first 10 minutes of the test	670	> 792	> 792	174	> 792	215
R22 - HL regardless of LOI values	Not classified	Not classified	Not classified	HL1 (and HL2)	Not classified	HL1 (and HL2)

Conclusions

- Opacity of smoke :
 - Relevance of the irradiance level : 25 kW/m² early stage of a fire event
 - Criteria : Ds_{max} measured over 10 minutes keeping in mind evacuation time of bus, is Ds_{90} or Ds_{240} more appropriate?
- Smoke Toxicity :
 - Is CIT model appropriate? (EU railway inspired) or should it focus on individual toxic concentrations (inspired from marine (FTP code) and Aircraft (ABD0031) models)
 - How to take into account the specificities of busses fire model?