

VRU-Proxi-08-02-R1

Summary of Previous GSR/ACEA and Current STATS19 Collision Landscape Analyses (Revision 1)

February 2019

Contents

- TRL Background
- Previous Research
 - GSR/ACEA Background
 - Summary of GSR Approach
 - Summary of ACEA Analysis
 - Summary of Relevant GSR Outcomes
- In-Progress STATS19 Research
 - STATS19 Analysis Approach
 - Definition of Total Populations
 - Specific Target Populations
 - Next Steps

TRL Background

TIRL

TRL Background

Vision

World leader in creating the future of transport and mobility, using evidence-based solutions and innovative thinking

320

engineers, scientists, psychologists, IT experts and statisticians

Providing world-leading research, technology and software solutions for surface transport modes and the related markets of automotive, motorsport, insurance and energy

Challenge and influence our chosen markets, driving sustained reductions (ultimately to zero) in:

- Fatalities and serious injuries
- Harmful emissions
- Barriers to inclusive mobility
- Unforeseen delays
- Cost inefficiencies

1000 clients in

the future of transport.

Mission

TRL Background...delivering impactful innovation

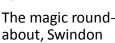
1997

NCAP launched

2018 London Smart Mobility

Gateway driverless Living Lab UK Smart Mobility

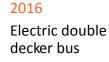
1950's/70's


network

The UK Motorway

1960s Early simulator

© 2019 TRL Ltd


1969

The self-driving

Citroën DS19

1980's Deflectometer London Summer Olympics

2015

shuttles

2017

HGV Truck Platooning

the future of transport.

1972 The magic round-

2012

2014

TRL cycle

infrastructure

development

Previous Research: ACEA/GSR Background

TIRL

ACEA/GSR Background

How do GSR and ACEA fit together?

AEB	SFS	Published research	
AEB-PCD	RFT	(GSR2 systematic review()	
LKA	ALC	features regarding the way forward for EU vehicle safety	
ESS	EDR	Extensive stakeholder	
ISA	TPM	report)	lysis
DDR	VIS	Prepared by TRL, C	EESAR, ACEA
SBR	RUR	ACEA Accidentology Results feed into GSR2	Contraction of the second seco
F94	LAT	impact assessment	
FFW	BFS-CNG	September 2018	Cost-effectiveness analysis of Policy Options for the mandatory implementation of different sets of vehicle safety measures – Review of
FSO	BFS-AFE	\mathbf{v}	the General Safety and Pedestrian Safety Regulations
S95	HED	European Policy impact	Technical Annex to GSK2 report S12,733025 Final Report
PSI	REV	assessment (GSR2 technical annex)	Million of H. Kapi, S. Marki, S. Tarvel, S. Walker, Art Million Sci. 2017

the future of transport.

ACEA/GSR Background

Where do I find the GSR/ACEA reports?

- General Safety Regulation 2 report:
 - https://publications.europa.eu/en/publication-detail/-/publication/77990533-9144-11e7b92d-01aa75ed71a1/language-en
- ACEA Accident Analysis report:
 - https://www.acea.be/uploads/publications/Accident_Analysis_TRL_CEESAR_2018.pdf
- TRL report for ACEA Accident Analysis:
 - <u>https://trl.co.uk/reports/effectiveness-estimates-proposed-amendments-eus-general-and-pedestrian-safety-regulations-0</u>
- Impact Assessment Technical Annex to General Safety Regulation 2 report:
 - https://publications.europa.eu/en/publication-detail/-/publication/ed4aff17-49c5-11e8be1d-01aa75ed71a1/language-en

Previous Research: Summary of GSR Approach

TIRL

GSR Objectives

Objective:

To calculate concrete cost-effectiveness indicators and numbers of road casualties that could be prevented at an EU-28 level for sets of safety measures proposed by the European Commission and considered for mandatory implementation in new vehicles.

GSR Scope

The specific scope of the study was defined as:

- Geographic scope: EU-28
- Vehicle categories covered: Cars (M1), Buses (M2&M3), Vans (N1), Trucks (N2&N3)
- Evaluation period: 2021–2037
- Baseline scenario: No further policy intervention in the transport sector, but voluntary improvements and effects of already implemented policies continue: Continued dispersion of mandatory vehicle safety measures into the legacy fleet and continued voluntary uptake of the safety measures under consideration.
- Action scenario: 17 safety technologies made mandatory according to Commission proposal.

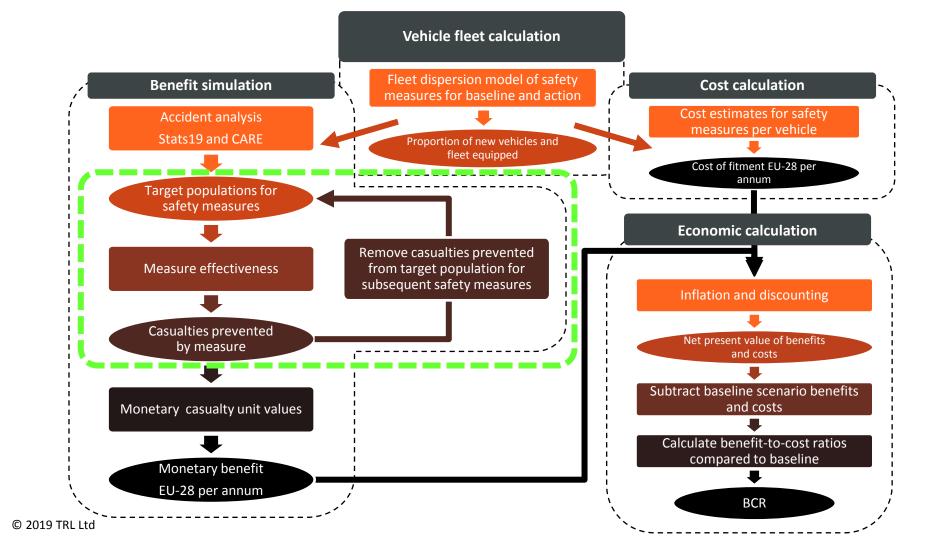
Measure	Description	Applicable vehicle categories			
AEB-VEH	Autonomous emergency braking for vehicles (moving and stationary targets)	M1		N1	
AEB-PCD	Autonomous emergency braking for pedestrians and cyclists	M1		N1	
ALC	Alcohol interlock installation document	M1	M2&M3	N1	N2&N3
DDR-DAD	Drowsiness and attention detection	M1	M2&M3	N1	N2&N3
DDR-ADR	Advanced distraction recognition	M1	M2&M3	N1	N2&N3
EDR	Event data recorder	M1		N1	
ESS	Emergency stop signal	M1	M2&M3	N1	N2&N3
FFW-137	Full-width frontal occupant protection (current R137 configuration with Hybrid III ATDs)	M1		N1	
FFW-THO	Full-width frontal occupant protection (introduction of THOR-M ATDs and lower appropriate injury criteria thresholds to encourage adaptive restraints)	M1		N1	
HED-MGI	Adult head-to-windscreen impact (mandatory HIC limit in headform-to-glass impact tests; no mandatory A-pillar impact)	M1		N1	
ISA-VOL	Intelligent speed assistance (voluntary type system; can be overridden by driver and switched off for the rest of journey)	M1	M2&M3	N1	N2&N3
LKA-ELK	Lane keeping assist (emergency lane keeping system that intervenes only in case of an imminent threat such as leaving the road, or leaving the lane with oncoming traffic)	M1		N1	
PSI	Pole side impact occupant protection	M1		N1	
REV	Reversing camera system	M1	M2&M3	N1	N2&N3
ТРМ	Tyre pressure monitoring system		M2&M3	N1	N2&N3
VIS-DET	Front and side vulnerable road user detection and warning (no auto braking)		M2&M3		N2&N3
VIS-DIV	Minimum direct vision requirement (best-in-class approach)		M2&M3		N2&N3

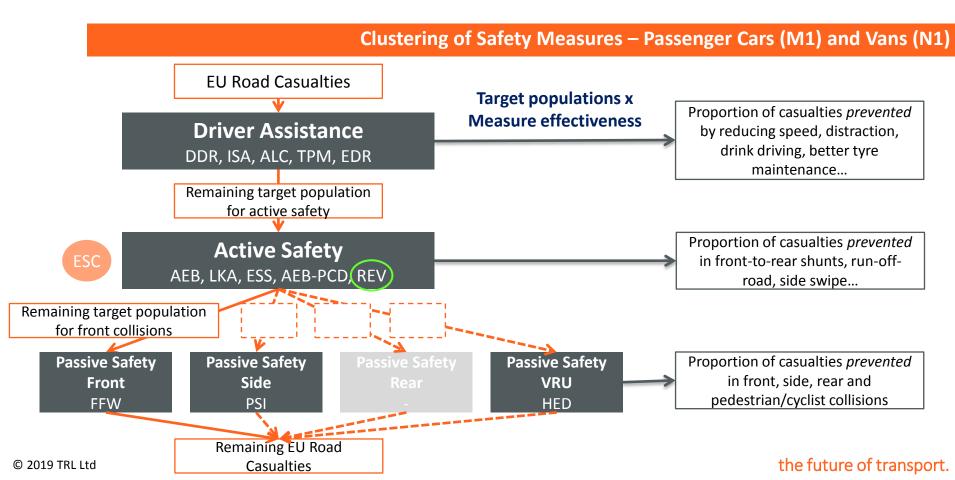
GSR Definitions of Relevant Safety Measure Functionality

VIS-DIV	VIS-DET	REV			
Functionality: Improving the drivers situational awareness of VRU's in close proximity to the vehicle					
Best in class direct vision requirements for what the driver can see through windscreen, side windows and any additional windows	Sensor-based detection systems for alerting the driver to VRUs that are manoeuvring around the vehicle.	Camera Monitoring Systems (CMS) for increasing the driver's field of vision while reversing.			
	s of the vehicle	Rear			

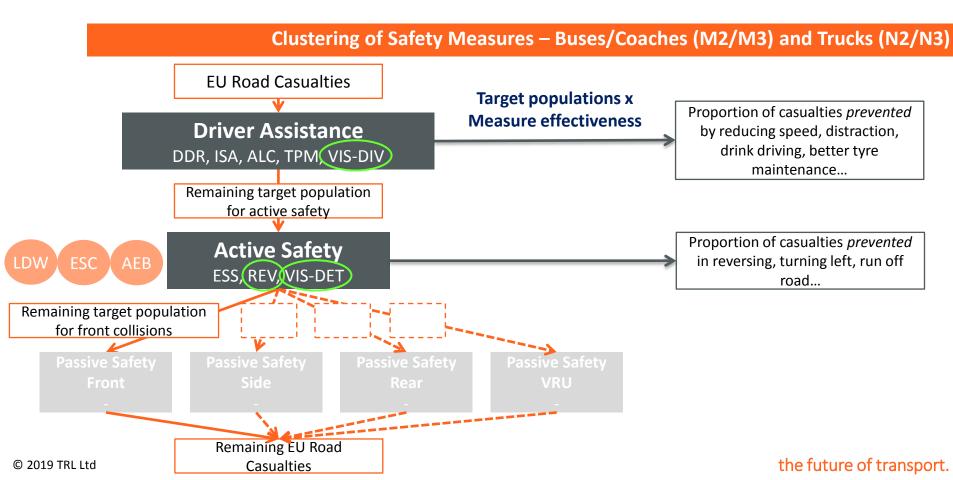
GSR Approach

Approach of the study

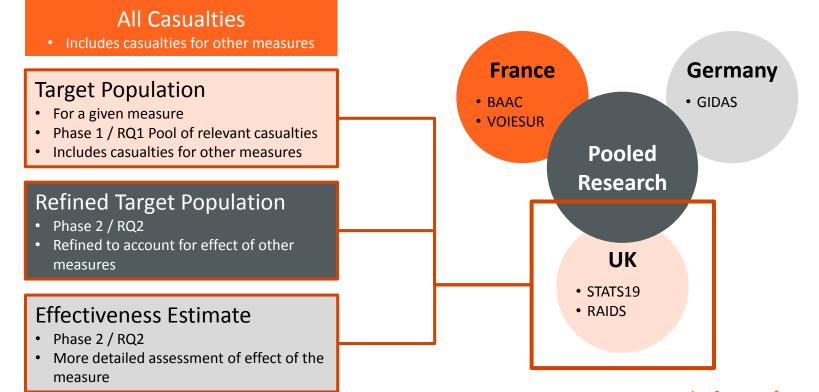

- Benefits considered: Monetary values of casualties prevented/mitigated (fatal, serious, slight) by safety measures
- Costs considered: Cost to vehicle manufacturers (OEMs) of fitment of safety measures to new vehicles
- Treatment of uncertainty: Interval, scenario and sensitivity analysis
- Results: Benefit-to-cost ratios (BCRs) and numbers of casualties prevented. All results are in comparison to the baseline scenario.


GSR Approach

Note that the model takes into account:


- The interactions of all measures when implemented together (to avoid double-counting of casualties prevented by different measures)
- The voluntary uptake of the proposed measures expected to happen without policy intervention (baseline scenario)
- The effects of already existing mandatory measures, which are still dispersing into the fleet (AEBS and LDWS for trucks and buses, ESC for all categories)
- Discounting and inflation of monetary values

Previous Research: ACEA Analysis

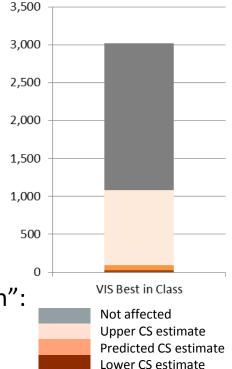


ACEA Definitions of Relevant Safety Measure Functionality

	VIS				
Direc	Direct Vision Forward and Side VRU detection and cameras specifications			Reversing Detection or	
VIS: Best-in-Class Vision	VIS: High Direct Vision	VIS: Warning	VIS: Automated Emergency Braking	cameras specifications	
 Remove highest chassis and adopt new cabs Improved direct vision through wind shield, passenger door 	 Low forward position cab Much improved direct vision through wind shield and passenger door 	 Detection and warning of VRU's ahead and at side of vehicle 	 Detection, warning and auto braking to avoid/mitigate collisions of VRU's ahead and at side of vehicle 	 Sensing systems to increase driver's view or warn of persons or obstacles when reversing Preference 	
 and side windows and side windows Benefits dependent on driver who needs to look at right time and take correct actions Beneficial when driving ahead and turning in low speeds, in dense traffic environment 		Includes crossing pedestr	er speed traffic scenarios	between camera and/or detection with visual/acoustic warning to be determined	

ACEA Data Sources

© 2019 TRL Ltd

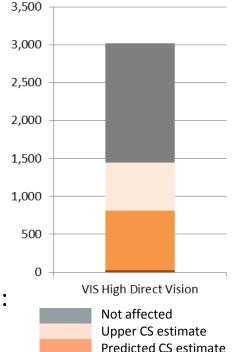

ACEA GB Target	Population Estimations	(5 ⁻	year total)
----------------	-------------------------------	-----------------	-------------

			Vehicle	TP casualties who benefit from measure			
Safety Measure	Casualty type	TP source	type	Fatal	Seriously injured	Slightly injured	Total
VIS – improved front end design for direct and	Pedestrians &	S19	N2	36	232	825	1,093
indirect driver vision	pedal cyclists	519	N3	275	564	1,015	1,854
			IVII	1,470	/,691	44,078	53,239
			M2	0	27	109	136
ISA – Intelligent Speed Assistance	All vehicle users	S19	M3	9	18	86	113
13A - Intelligent Speed Assistance	& VRUs	313	N1	18	190	1,551	1,759
			N2	0	14	90	104
			N3	54	68	321	443
FSO – Frontal impact Small Overlap crash test *	M1 occupants	S19+RAIDS	M1	72	855	13,175	14,102
SFS – Side impact Far Side occupant crash test *†	M1 occupants	S19+RAIDS	M1	133 - 181	896 - 1,713	10,723 -28,671	11,752 – 30,565
F94 – Frontal Impact Crash Test (removal of	M1 & N1	S19	M1	49	661	7,214	7,924
exemptions from Regulation 94)	occupants	219	N1	56	576	5,483	6,115
S95 – Side Impact Crash Test (removal of	M1 & N1	S19	M1	13	156	2,382	2,551
exemptions from Regulation 95)	occupants	219	N1	15	148	2,460	2,623
HED – Adult Head to Windscreen Area †‡	Pedestrians	S19+RAIDS	M1	107 – 269	1218 - 3046	-	(1325 – 3315)
HED – Adult Head to Windscreen Area +	Cvclists	S19+RAIDS	M1	18	534	-	(552)
REV – Reversing Detection Note: Stats19 only includes collisions on the public highway and excludes those occurring in car parks, service yards and private workplace sites.	Pedestrians & pedal cyclists	S19	N2, N3, O3+O4	7	41	136	177

ACEA Casualty Savings (5 year total) and Effectiveness: Best-in-Class Vision

VIS		Killed	Seriously Injured	Slightly Injured	Total Casualties
ND	TP (RQ1)	36	232	825	1,093
N2	CS (RQ2)	1	7	25	33
N3	TP (RQ1)	275	564	1,016	1,855
CVI	CS (RQ2)	8	17	30	55
N	TP (RQ1)	1	14	56	71
N _{unknown}	CS (RQ2)	0	0	2	2
Total	TP (RQ1)	312	810	1,897	3,019
Total	CS (RQ2)	9	24	57	90

the future of transport.


Overall effectiveness value for requiring "best-in-class vision":

- 3% (1%-36%)
- Based on STATS19/RAIDS data only

ACEA Casualty Savings (5 year total) and Effectiveness: High Direct Vision

VIS		Killed	Seriously Injured	Slightly Injured	Total Casualties
N2	TP (RQ1)	36	232	825	1,093
INZ	CS (RQ2)	10	63	223	296
N2	TP (RQ1)	275	564	1,016	1,855
N3	CS (RQ2)	74	153	274	501
N	TP (RQ1)	1	14	56	71
N _{unknown}	CS (RQ2)	0	4	15	19
Total	TP (RQ1)	312	810	1,897	3,019
Iotal	CS (RQ2)	84	220	512	816

Lower CS estimate the future of transport.

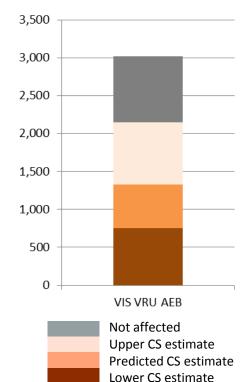
- Overall effectiveness value for requiring "high direct vision":
 - **27% (1%-48%)**
 - Based on STATS19/RAIDS data only

ACEA Casualty Savings (5 year total) and Effectiveness: VRU Detection

VIS		Killed	Seriously Injured	Slightly Injured	Total Casualties
N2	TP (RQ1)	36	232	825	1,093
NZ	CS (RQ2)	14	93	330	437
ND	TP (RQ1)	275	564	1,016	1,855
N3	CS (RQ2)	110	226	407	743
NI	TP (RQ1)	1	14	56	71
N _{unknown}	CS (RQ2)	0	5	23	28
Total	TP (RQ1)	312	810	1,897	3,019
Total	CS (RQ2)	124	324	760	1,208

3,500 3,000 2,500 2,000 1,500 1,000 500 0 VIS VRU Detection Not affected Upper CS estimate

Predicted CS estimate


Lower CS estimate the future of transport.

- Overall effectiveness value for requiring "VRU detection":
 - 40% (6%-47%)
 - Based on STATS19/RAIDS data only

ACEA Casualty Savings (5 year total) and Effectiveness: VRU AEB

VIS		Killed	Seriously Injured	Slightly Injured	Total Casualties
N2	TP (RQ1)	36	232	825	1,093
INZ	CS (RQ2)	15	102	363	480
N3	TP (RQ1)	275	564	1,016	1,855
115	CS (RQ2)	121	248	448	817
N	TP (RQ1)	1	14	56	71
N _{unknown}	CS (RQ2)	0	7	25	32
Total	TP (RQ1)	312	810	1,897	3,019
Total	CS (RQ2)	136	357	836	1,329

the future of transport.

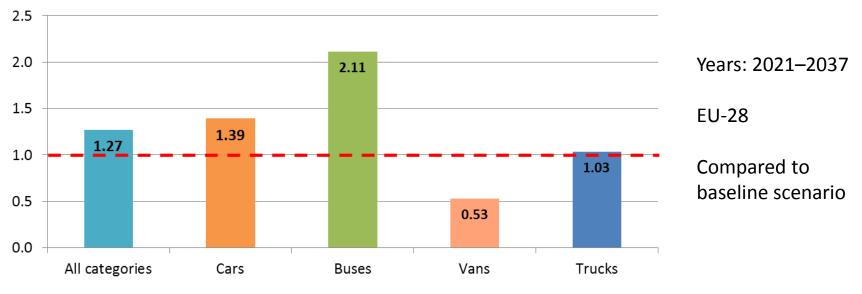
- Overall effectiveness value for requiring "VRU AEB":
 - **44% (25%-71%)**
 - Based on STATS19/RAIDS data only

ACEA Casualty Savings (5 year total) and Effectiveness: Reversing Detection/Camera Systems

- Overall effectiveness value for requiring reversing detection & camera systems:
 - ACEA no evaluation of the potential benefits possible as sample size was too small
- GSR adopted the below:
 - M1/N1:
 - 41% (95% confidence interval: 12% to 61%), based on Keall et al. (2017).
 - M2/M3/N2/N3:
 - Assumed 33% effective based on ACEA consultation

Previous Research: Summary of GSR Outcomes

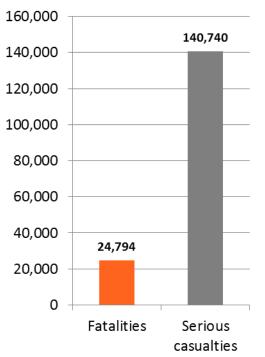
TIRL


Summary of GSR Outcomes

Cost-effectiveness

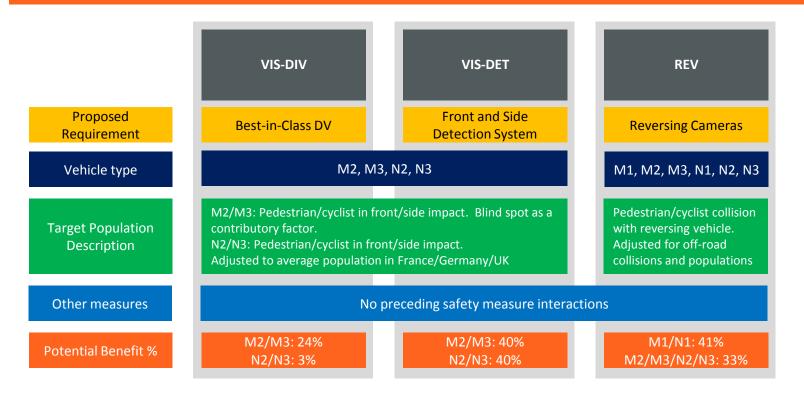
Benefit-to-cost ratios (BCR) of the Commission Proposal

Values greater than 1 indicate that the benefits are greater than the costs


© 2019 TRL Ltd

Summary of GSR Outcomes

Overall Casualty Saving Benefit Outcomes


Number of casualties prevented by the Commission Proposal split by vehicle categories over the 2021–2037 evaluation period across EU-28 compared to baseline scenario				
	Cars	Buses	Vans	Trucks
Fatalities	21,337	227	1,283	1,947
Serious casualties	126,390	2,410	6,917	5,023
Slight casualties	470,747	8,174	23,486	13,274

Summary of GSR Outcomes

Summary of Relevant GSR Input Information

In-Progress STATS19 Research: STATS19 Analysis Approach

TIRL

STATS19 Analysis Approach

Introduction to STATS19 Analysis Approach

- All vehicles categorised into Dir. 2007/46/EC categories using STATS19 data
- STATS19 variables used to define <u>total population</u> of casualties
- Further criteria to define <u>target populations</u> for each safety measure
- Target populations <u>split by vehicle category</u> to determine regulation scope
- Target populations presented as the number of casualties per annum and monetised cost to society per annum
- Target populations due to be scaled to European/global level
- Monetised cost to society figures used:
 - Fatal €1.87million
 - Serious €243,100
 - Slight €18,700

STATS19 Analysis Approach

Introduction to STATS19

- STATS19 is a national database of reported injury collisions on public roads in Great Britain
- Data for 2011-2015 has been used for this analysis
- Data is recorded at four levels
 - **Collision details** e.g. location, road type, weather/lighting conditions
 - Vehicle details e.g. vehicle type, vehicle manoeuvre, vehicle location
 - Casualty details e.g. casualty class, casualty location/movement (if pedestrian)
 - Contributory factors factors which the police felt contributed to the collision e.g. 'failed to look properly'
- Enhanced vehicle data is also recorded for c.76% of vehicles, including max. gross vehicle weight, body type and wheelplan

STATS19 Analysis Approach

Categorisation of Vehicles using STATS19

Category	⁷ European definition	S19 definition used if enhanced vehicle data available ¹	S19 definition used if enhanced vehicle data not available
M1	Passenger car not more than 8 passenger seats	Vehicle type = car or taxi Passenger seats: 8 or less TRL vehicle segment not equal to van ²	Vehicle type = car or taxi
M2	Passenger vehicle with more than 8 passenger seats and maximum mass not exceeding 5t	r Vehicle type = minibus or bus/coach Max gross vehicle weight ≤ 5t.	Vehicle type = minibus
M3	Passenger vehicle with more than 8 passenger seats and maximum mass exceeding 5t	er Vehicle type = minibus or bus/coach Max gross vehicle weight > 5t.	Vehicle type = bus/coach
N1	Goods vehicles not exceeding 3.5t	Vehicle type = any goods vehicle category Max gross vehicle weight ≤ 3.5t M1 vehicles with TRL vehicle segment equal to van	Vehicle type = goods vehicles ≤ 3.5t
N2	Goods vehicles between 3.5t and 12t	Vehicle type = any goods vehicle category Max gross vehicle weight > $3.5t$ and $\leq 12t$.	Vehicle type = goods vehicles > 3.5t and <7.5t
N3	Goods vehicles having a maximum mass exceeding 12t	Vehicle type = any goods vehicle category Max gross vehicle weight >12t.	Vehicle type = goods vehicles ≥ 7.5t
N _{unknown}		ΝΑ	Vehicle type = goods vehicle unknown weight

¹For M1 the required enhanced vehicle data was seat capacity and for all other categories the required enhanced vehicle data was max gross vehicle weight ²TRL segment criteria only applies to those vehicles with make and model vehicle data available

```
the future of transport.
```

TIRL

In-Progress STATS19 Research: Total Population

Refinement of Total Population

- VRU casualties 2011-2015: 320,638 (64,127.6 per annum)
- VRU casualties involved in 'single vehicle'¹ collisions with an M/N vehicle per annum: 53,180.4 (83% of all)
- VRU casualties involved in 'single vehicle' collisions with an M/N vehicle attended by a police officer: 40,846.4 (77% of all 'single vehicle')
- 'Police officer attended' criteria only needed for analysis of contributory factor data therefore not included in definition of total population
- VRU casualties involved in 'single vehicle' collisions on roads with speed limit ≤20mph: 1,766.8 (3% of all 'single vehicle')
- VRU casualties involved in 'single vehicle' collisions on roads with speed limit ≤30mph: 45,914.4 (86% of all 'single vehicle')

¹ 'Single vehicle' collision defined as collision involving either one vehicle and a pedestrian, or a pedal cyclist/PTW and one other vehicle © 2019 TRL Ltd the future of transport.

Refinement of Total Population – Speed Limit Criteria

- Collision landscapes for ≤20 mph/≤30 mph speed limit filters compared for different vehicle categories during relevant collision scenarios:
 - M1/M2/M3/N1/N2/N3
 - Left Turn, Moving Off, Slowing/Stopping
- Comparison of % differences in proportions of all collisions on roads with speed limit for different casualties, severities and vehicle categories
 - Differences between all collisions and ≤20 mph speed limit
 - Left turn: 15.9%; Moving Off: 5.3%; Slowing/Stopping: 13.9% NB: large variance
 - Differences between all collisions and ≤30 mph speed limit
 - Left turn: 5.3%; Moving Off: 1.0%; Slowing/Stopping: 2.5%
- Considerable difference in collision landscape demography

the future of transport.

Refinement of Total Population – Speed Limit Criteria

- RAIDS case-by-case analysis of 26 cases of N2/N3 vs. VRU collisions shows:
 - Of the 14 collisions with low/very low vehicle impact speeds (i.e. 0-29 kph),
 64% occurred on a road with a speed limit of ≥40 mph
- Low speed manoeuvres still occur on roads with speed limits of \geq 40 mph
 - E.g. vehicle turning left/moving off after having been stopped at traffic lights on a road with a posted 40 mph speed limit
- It is proposed that no speed limit filter is applied to the total population

Final total population definition:

Annual number of VRU casualties¹ from 'single vehicle' collisions with M/N category vehicles between 2011 and 2015

¹ Casualties currently calculated for GB only

the future of transport.

Total annual number of VRU casualties (GB)

Vehicle	P	edestria	n		Cyclist			PTW		Societal
Category	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)
M1	236.4	3,862.6	14,601.0	46.4	2,292.8	13,105.8	136.6	2,816.6	9,383.2	3,659.0
M2	1.8	19.2	63.0	0.2	8.0	34.6	1.0	8.0	26.0	16.5
M3	28.2	216.8	822.0	4.0	55.0	282.2	5.0	28.6	102.2	165.2
N1	30.4	304.4	1,134.8	6.2	232.8	1,123.4	19.2	258.4	858.6	356.0
N2	6.0	32.6	112.0	2.4	23.6	94.2	3.0	22.0	66.0	45.4
N3	41.6	71.6	121.8	17.0	62.0	143.8	12.0	57.8	110.8	185.6
N _{unknown}	0.2	1.6	8.4	0.0	2.4	7.4	0.0	1.8	3.0	2.1
Total	344.6	4,508.8	16,863.0	76.2	2,676.6	14,791.4	176.8	3,193.2	10,549.8	4,429.8

Total annual societal costs of VRU casualties (GB)

2,500 Pedestrian Cyclist PTW 2,056 cost to society (Em) 2,000 1,654 1,070 1,304 1,500 1,116 889 1,000 Monetised 500 $\begin{array}{c}
 152 \\
 89 \\
 115 \\
 115 \\
 \end{array}$ 121 6 8 :00 121 0 M 4 21 ---0 0 All M1 M2 M3 N1 N2 N3 N(un) Vehicle category

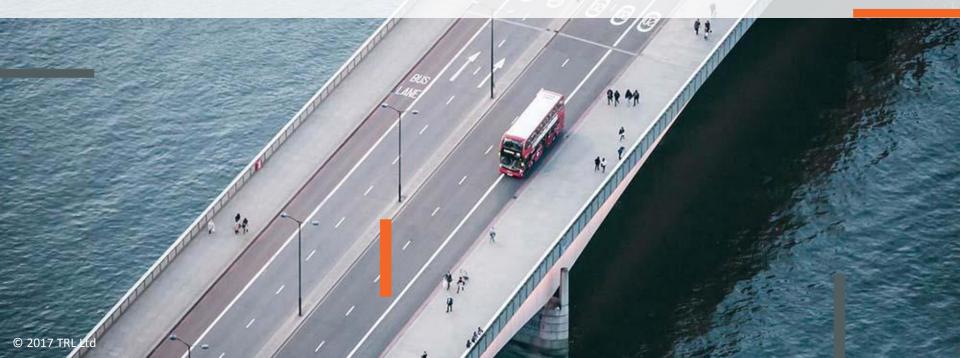
- Total annual societal cost to GB of €4.43bn
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Ranking of societal costs:
 - M1>N1>N3>M3>N2>M2
- Specific target populations (TP) derived from top-level total population

© 2019 TRL Ltd

the future of transport.

In-Progress STATS19 Research: Specific Target Populations

TIRL



Target Population Definitions

- Target population:
 - "The total number of fatalities and/or injured casualties that a particular safety measure is specifically designed to try to prevent each year"
- Two target populations are described for each safety measure:
 - Top level (TP1) broader target population defined using vehicle manoeuvre and vehicle impact point only
 - Detailed (TP2) more specific target population defined using both vehicle and VRU manoeuvres and both vehicle and VRU impact points
- Key results to consider for each target population include:
 - Cost to society per vehicle category/weight classification
 - Proportion of total cost to society per vehicle category/weight classification
 - Proportion of KSI per vehicle category/weight classification

Blind-Spot Information System (BSIS)

BSIS Target Population Definitions

Top level target population (TP1):

- Vehicle manoeuvre = left turn
- Vehicle impact = front or nearside

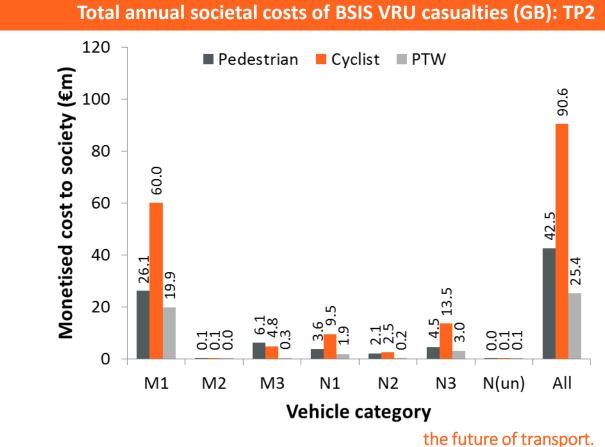
Detailed target population (TP2):

	Pedestrian		Cycl	ist/PTW				
Vehicle manoeuvre	VRU manoeuvre	Vehicle manoeuvre	Vehicle impact	VRU manoeuvre	VRU impact			
	Crossing from driver's n/s In carriageway, not crossing	Left turn	Nearside Front	Going ahead LH bend/RH bend/other Moving off Overtaking on n/s Slowing or stopping Left turn Waiting to go ahead Waiting to turn left/right	Offside			
Left turn	Walking along back to traffic		OR					
	Walking along facing traffic	Going ahead LH bend/RH bend/other Overtaking moving vehicle on its o/s Changing lane to left	Nearside	Going ahead LH bend/RH bend/other Moving off Overtaking on n/s Slowing or stopping Left turn Waiting to go ahead Waiting to turn left/right	Offside			

Annual Target Populations for BSIS VRU casualties (GB)

Vehicle	Target	P	edestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
N/1	TP1	2.4	114.2	591.2	0.8	188.2	1,513.6	0.8	49.6	317.4	138.3	3.8%
M1	TP2	1.6	68.6	345.8	1.8	153.6	1,034.0	0.8	50.6	324.0	106.0	2.9%
	TP1	0.0	0.4	3.4	0.0	0.2	4.6	0.0	0.2	0.6	0.4	2.2%
M2	TP2	0.0	0.2	1.6	0.0	0.4	2.6	0.0	0.0	1.8	0.3	1.6%
	TP1	2.8	12.6	34.0	1.0	2.0	14.8	0.0	0.8	3.0	11.8	7.2%
M3	TP2	1.8	9.6	21.6	0.6	10.2	62.0	0.0	1.0	5.0	11.2	6.8%
NI	TP1	1.2	10.0	50.6	0.2	23.6	171.4	0.0	6.0	41.4	17.2	4.8%
N1	TP2	0.8	6.4	31.4	0.4	24.0	157.2	0.0	4.4	41.8	15.0	4.2%
ND	TP1	1.0	2.6	7.6	0.2	3.2	12.6	0.0	0.0	3.2	4.1	9.0%
N2	TP2	0.8	2.0	4.6	0.4	5.6	22.8	0.0	0.4	3.8	4.8	10.5%
NO	TP1	2.0	5.8	10.8	5.8	14.4	21.0	0.4	2.0	7.4	21.5	11.6%
N3	TP2	1.8	4.2	6.8	5.0	14.2	38.6	1.2	2.4	9.8	21.0	11.3%
N	TP1	0.0	0.2	0.2	0.0	0.2	1.2	0.0	0.0	0.0	0.1	5.8%
N _{unknown}	TP2	0.0	0.0	0.2	0.0	0.4	1.0	0.0	0.4	0.0	0.2	10.2%
Tatal	TP1	9.4	145.8	697.8	8.0	231.8	1,739.2	1.2	58.6	373.0	193.4	4.4%
Total	TP2	6.8	91.0	412.0	8.2	208.4	1,318.2	2.0	59.2	386.2	158.5	3.6%

Total annual societal costs of BSIS VRU casualties (GB): TP1


120 103.8 Pedestrian Cyclist PTW (€m) 100 society 75.6 80 cost to 60 \sim 43 Monetised 40 23.5 <u>1</u>9 20 00.1 0.10 0 N3 M1 M2 M3 N1 N2 N(un) All Vehicle category

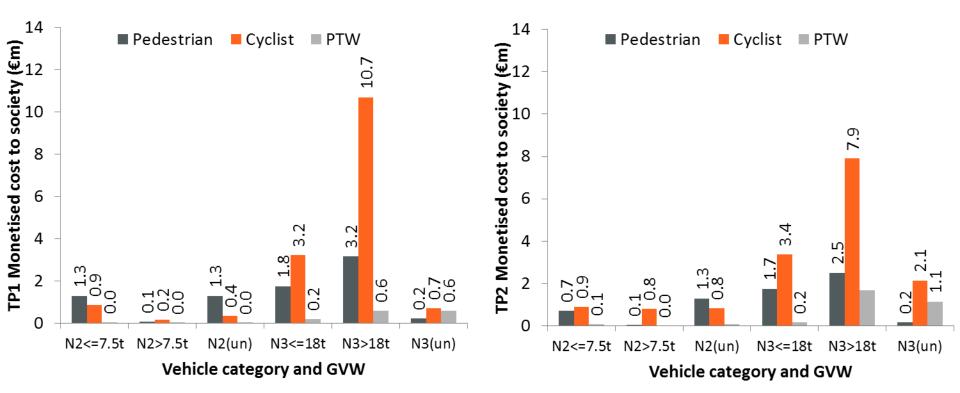
- BSIS Target Population 1
- Total annual societal cost to GB of €193M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Cyclists most affected casualty (apart from M3)
- Ranking of societal costs:
 - M1>N3>N1>M3>N2>M2

© 2019 TRL Ltd

the future of transport.

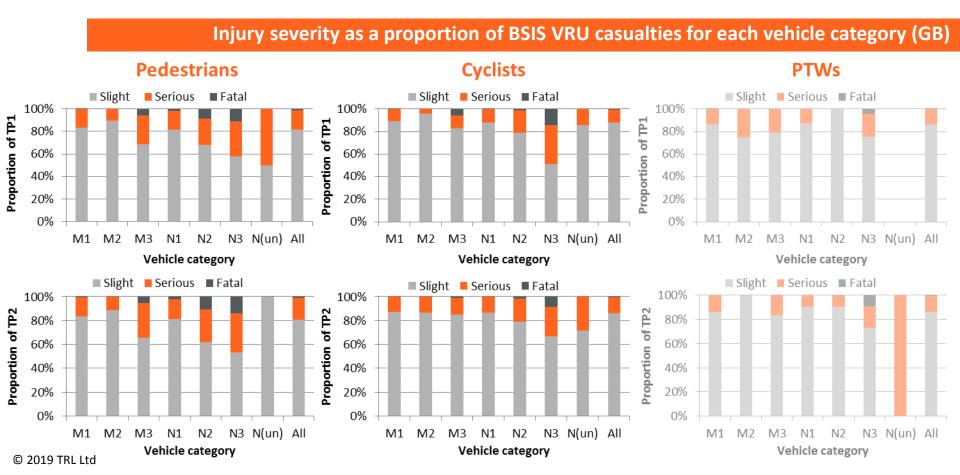
- BSIS Target Population 2
- Total annual societal cost to GB of €159M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Cyclists most affected casualty (apart from M3)
- Ranking of societal costs:
 - M1>N3>N1>M3>N2>M2

© 2019 TRL Ltd



Annual Target Populations for BSIS VRU casualties (GB): N2/N3 Weights

Vehicle	Target	P	Pedestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
	TP1	0.4	1.8	5.4	0.2	1.4	8.6	0.0	0.0	2.2	2.2	7.3%
N2 ≤7.5T	TP2	0.2	1.2	3.2	0.0	2.8	11.0	0.0	0.2	2.4	1.7	5.6%
	TP1	0.0	0.2	0.6	0.0	0.6	0.4	0.0	0.0	0.4	0.2	4.4%
N2 >7.5T	TP2	0.0	0.2	0.6	0.4	0.2	0.8	0.0	0.0	0.0	0.9	19.6%
NO	TP1	0.6	0.6	1.6	0.0	1.2	3.6	0.0	0.0	0.6	1.7	16.2%
N2 _{un_GVW}	TP2	0.6	0.6	0.8	0.0	2.6	11.0	0.0	0.2	1.4	2.2	21.0%
N2 <10T	TP1	0.8	0.8	3.2	1	5.2	4.8	0.0	0.6	1.8	5.2	16.0%
N3 ≤18T	TP2	0.8	0.8	2.2	1.4	2.8	4.0	0.0	0.6	1.6	5.3	16.3%
N2 > 10T	TP1	1.2	3.4	5.6	4.6	7.8	10.6	0.2	0.6	4.2	14.5	11.5%
N3 >18T	TP2	1.0	2.4	3.2	3.0	7.8	20.8	0.8	0.4	5.2	12.1	9.6%
NO	TP1	0.0	0.8	2	0.2	1	4.2	0.2	0.8	1	0.3	1.1%
N3 _{un_GVW}	TP2	0.0	0.6	1.4	0.6	3.2	12.2	0.4	1.4	3.0	3.4	12.5%



the future of transport.

BSIS Proposed Regulation Scope

ECE/TRANS/WP.29/GRSG/2018/24/rev.1

- Current scope proposal
 - Just to remind
- Required:
 - N2 (>8T)
 - N3
- Optional:
 - N2 (≤8T)
 - M2
 - M3

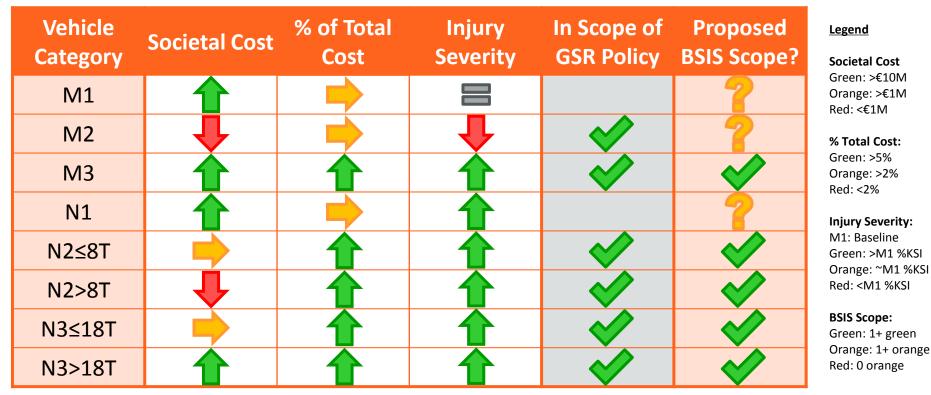
vehicles, especially when turning into a narrow street, require a counter-turn that starts approximately 15 m before entering that street, so the test procedure included in this Regulation requires the information signal to be activated 15 m before the expected collision point.

1. Scope

- 1.1. This Regulation applies to the blind spot information system of vehicles of categories $[M_{2-3}]$ N₂ [(> 8 t of technically permissible maximum mass)] and $[M_3$ -and] N₃. Other-vVehicles of categories N₂ (\leq 8 t of technically permissible maximum mass), M₂ and M₃ may be approved at the request of the manufacturer.
- 1.2. The requirements of this Regulation are so worded as to apply to vehicles which are developed for right-hand traffic. In vehicles that are developed for left-hand traffic, these requirements shall be applied by inverting the criteria, when appropriate.
- 2. Definitions

For the nurnesse of this Domilation

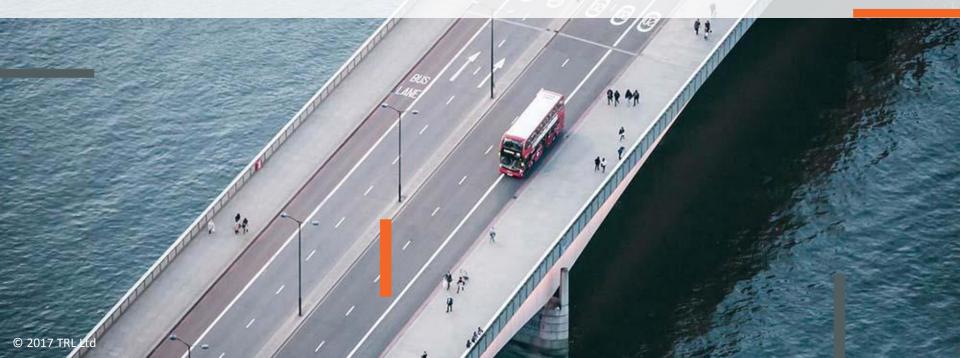
the future of transport.



BSIS Collision Landscape Conclusions Relating to Vehicle Categories

- VRU collisions relevant to BSIS dominated by collisions with M1 vehicles:
 - Should M1/N1 vehicles be considered in scope?
- Ranking of vehicle category priority:
 - Societal costs: M1>N3>N1>M3>N2>M2
 - Proportion of total societal costs for category: N3>N2>M3>N1>M1>M2
 - If N2/N3 in scope, should M3 be considered in scope?
- Considering N2/N3 scope exclusions based on GVW:
 - N2≤7.5T has larger TP than N2>7.5T ⇒ should N2≤7.5T be considered in scope?
 - N3≤18T and N3>18T both have larger TP than all N2 category vehicles
- Considering injury severities:
 - N3, N2, M3 all have greater proportion of KSI cost than M1
- Conclusions not affected by selection of target population definition (TP1/TP2)

BSIS Regulatory Scope: Selection of Applicable Vehicle Categories



the future of transport.

© 2019 TRL Ltd

Reversing Camera & Detection System (REV)

REV Target Population Definitions

• Top level target population (TP1):

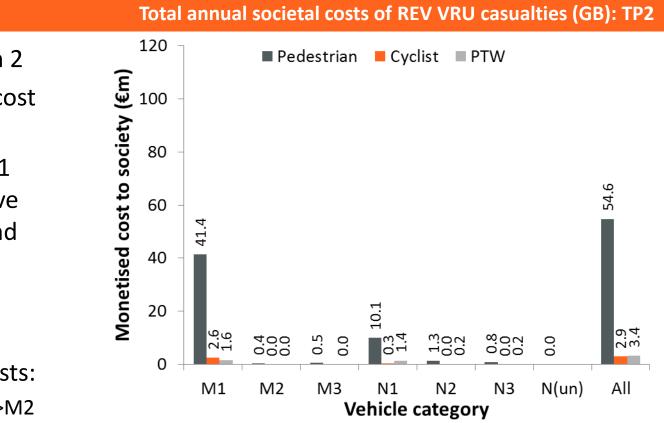
- Vehicle manoeuvre = reversing
- Vehicle impact = rear
- Detailed target population (TP2):

	Pedestrian	Cyclist/PTW Vehicle								
Vehicle manoeuvre	VRU manoeuvre	Vehicle manoeuvre	VRU manoeuvre	VRU impact						
	Crossing from driver's n/s Crossing from driver's o/s	Reversing	Rear	Moving off Slowing or stopping Waiting to go ahead Waiting to turn left/right	-					
Reversing	In carriageway, not crossing Walking along back to traffic			OR						
	Walking along facing traffic	Reversing	Rear	Going ahead LH bend/RH bend/other	Offside Nearside					
	i									

Annual Target Populations for REV VRU casualties (GB)

Vehicle	Target	P	edestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
N/1	TP1	6.6	185.0	1,119.2	0.0	12.6	133.0	0.0	8.4	83.2	87.4	2.4%
M1	TP2	2.6	103.0	617.2	0.0	5.8	62.8	0.0	2.8	48.6	45.6	1.2%
N42	TP1	0.0	2.6	7.6	0.0	0.0	0.2	0.0	0.0	1.2	0.8	4.9%
M2	TP2	0.0	1.4	5.4	0.0	0.0	0.2	0.0	0.0	0.8	0.5	2.8%
N42	TP1	0.2	0.8	4.6	0.0	0.0	0.0	0.0	0.0	2.0	0.7	0.4%
M3	TP2	0.2	0.4	2.4	0.0	0.0	0.0	0.0	0.0	1.0	0.5	0.3%
N14	TP1	3.2	42.6	189.2	0.0	1.4	23.4	0.0	4.4	49.6	22.7	6.4%
N1	TP2	1.0	26.0	103.4	0.0	0.4	12.6	0.0	2.8	36.4	11.8	3.3%
ND	TP1	0.6	3.2	10.0	0.0	0.0	0.6	0.0	0.6	4.2	2.3	5.1%
N2	TP2	0.4	1.8	4.8	0.0	0.0	0.4	0.0	0.6	4.0	1.5	3.3%
NO	TP1	0.6	2.0	9.0	0.0	0.0	0.8	0.0	0.6	4.8	2.0	1.1%
N3	TP2	0.2	1.6	4.2	0.0	0.0	0.2	0.0	0.4	3.0	1.0	0.5%
N	TP1	0.0	0.0	1.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	1.1%
N _{unknown}	TP2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2%
Tatal	TP1	11.2	236.2	1,340.6	0.0	14.0	158.2	0.0	14.0	145.0	115.9	2.6%
Total	TP2	4.4	134.2	737.6	0.0	6.2	76.2	0.0	6.6	93.8	60.9	1.4%

120 103.4 Pedestrian Cyclist PTW (€m) 100 Monetised cost to society 78.2 80 60 40 19.9 20 6.4 6.1 3.6 3.6 2.0 0.00 0.0 0.0 0.7 0 M1 M2 N3 N(un) M3 N1 N2 All Vehicle category


Total annual societal costs of REV VRU casualties (GB): TP1

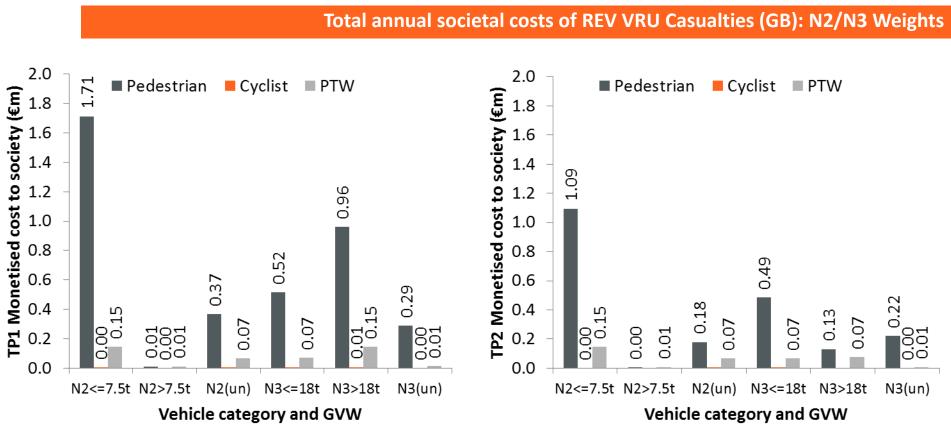
- REV Target Population 1
- Total annual societal cost to GB of €116M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Pedestrians most affected casualty
- Ranking of societal costs:
 - M1>N1>N2>N3>M2>M3

the future of transport.

© 2019 TRL Ltd

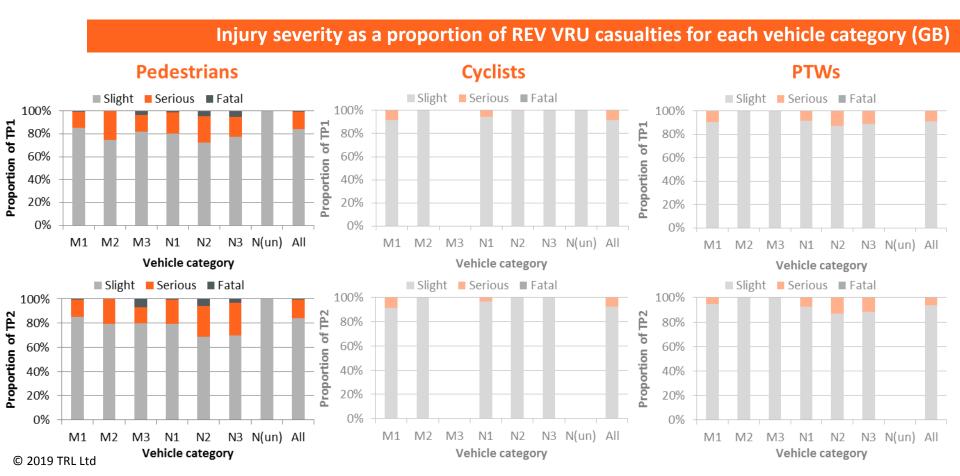
- REV Target Population 2
- Total annual societal cost to GB of €61M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Pedestrians most affected casualty
- Ranking of societal costs:
 - M1>N1>N2>N3>M3>M2

the future of transport.


© 2019 TRL Ltd

Annual Target Populations for REV VRU casualties (GB): N2/N3 Weights

Vehicle	Target	P	edestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
	TP1	0.6	2.0	5.4	0.0	0.0	0.2	0.0	0.4	2.6	1.9	6.3%
N2 ≤7.5T	TP2	0.4	1.2	2.8	0.0	0.0	0.0	0.0	0.4	2.6	1.2	4.0%
	TP1	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0%
N2 >7.5T	TP2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0%
NO	TP1	0.0	1.2	4.0	0.0	0.0	0.4	0.0	0.2	1.0	0.4	3.8%
N2 _{un_GVW}	TP2	0.0	0.6	1.8	0.0	0.0	0.4	0.0	0.2	1.0	0.3	2.9%
N2 <10T	TP1	0.2	0.4	2.4	0.0	0.0	0.2	0.0	0.2	1.2	0.6	1.9%
N3 ≤18T	TP2	0.2	0.4	0.8	0.0	0.0	0.2	0.0	0.2	1.0	0.6	1.9%
N2 \10T	TP1	0.4	0.6	3.6	0.0	0.0	0.4	0.0	0.4	2.6	1.1	0.9%
N3 >18T	TP2	0.0	0.4	1.8	0.0	0.0	0.0	0.0	0.2	1.4	0.2	0.2%
N/2	TP1	0.0	1.0	2.4	0.0	0.0	0.0	0.0	0.0	0.8	0.3	1.1%
N3 _{un_GVW}	TP2	0.0	0.8	1.4	0.0	0.0	0.0	0.0	0.0	0.4	0.2	0.7%



© 2019 TRL Ltd

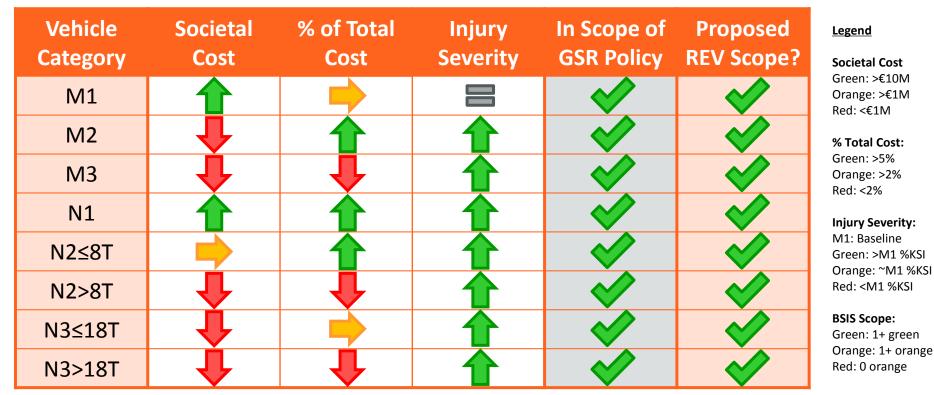
the future of transport.

REV Proposed Regulation Scope

- Current scope proposal
 - Just to remind
- Required:
 - All categories and weight classes

Add a new "	eighth column to the table in paragraph 15.2.1.1.3., to read:
Vehicle category	Close-proximity rear-view Class VIII
Mı	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
M2	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
M3	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
Nı	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
$N_2 \le 7.5 t$	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
N2 > 7.5 t	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).
N 3	Compulsory May be viewed using a combination of direct view and indirect vision devices (of Classes I through VI).

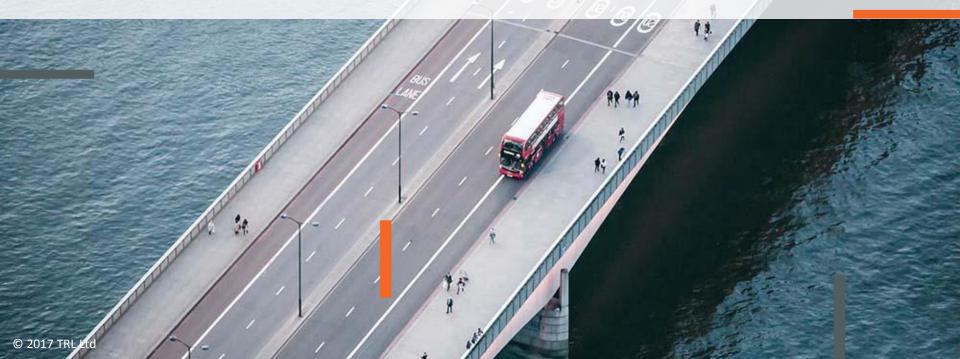
the future of transport.



REV Collision Landscape Conclusions Relating to Vehicle Categories

- VRU collisions relevant to REV dominated by M1/N1 vehicles:
 - <5% societal cost of casualties for all other vehicle categories combined</p>
 - <6.5% of total societal costs for any vehicle category</p>
 - Primarily involved in collisions with pedestrians (>89%)
 - Should other vehicle categories be considered in scope? Off-road collisions?
- Considering N2/N3 scope exclusions based on GVW:
 - N2 \leq 7.5T has larger TP than N2>7.5T, with N2>7.5T \approx 0
 - N3≤18T and N3>18T have similar TP, but smaller than N2≤7.5T
- Considering injury severities:
 - All categories have greater proportion of KSI cost than M1, while only N2/N3 have greater proportion of KSI than N1
- Conclusions not affected by selection of target population definition (TP1/TP2)

REV Regulatory Scope: Selection of Applicable Vehicle Categories



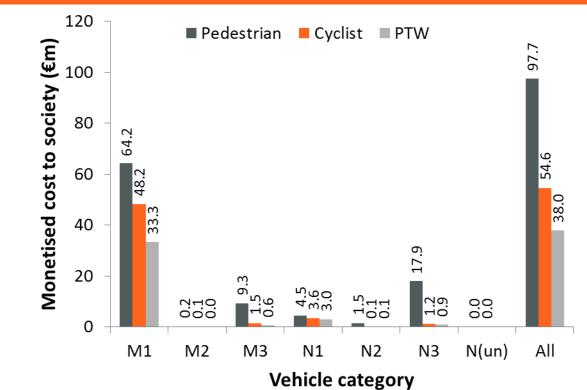
the future of transport.

© 2019 TRL Ltd

Moving-Off Information System (MOIS)

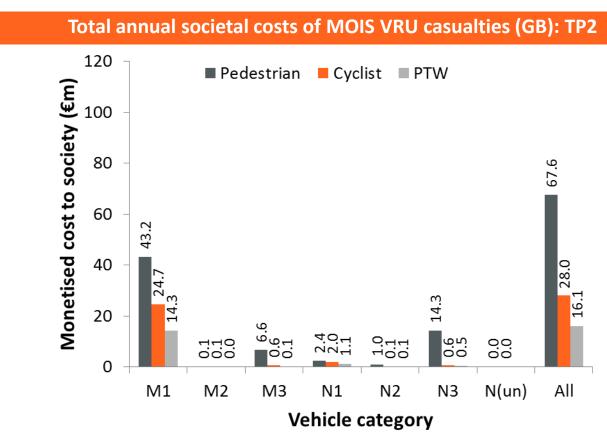
MOIS Target Population Definitions

- Top level target population (TP1):
 - Vehicle manoeuvre = moving off or slowing/stopping
 - Vehicle impact = front
- Detailed target population (TP2):


Pe	edestrian		Су	/clist/PTW	
Vehicle manoeuvre	VRU manoeuvre	Vehicle manoeuvre	Vehicle impact	VRU manoeuvre	VRU impact
Moving off	Crossing from driver's n/s Crossing from driver's o/s	Moving off Slowing or stopping	Front	Moving off Slowing or stopping Waiting to go ahead Waiting to turn left/right	-
Slowing or stopping	In carriageway, not crossing Walking along back to traffic			OR	
	Walking along facing traffic	Moving off Slowing or stopping	Front	Going ahead I H bend/RH bend/other	Offside Nearside

Annual Target Populations for MOIS VRU casualties (GB)

Vehicle	Target	P	edestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
M1	TP1	3.0	166.8	966.0	0.4	126.8	888.2	1.2	92.0	465.8	145.7	4.0%
IVII	TP2	1.8	113.2	657.0	0.4	64.0	446.4	0.4	40.4	198.8	82.1	2.2%
	TP1	0.0	0.6	3.4	0.0	0.4	2.2	0.0	0.0	2.0	0.4	2.3%
M2	TP2	0.0	0.2	1.6	0.0	0.2	1.0	0.0	0.0	1.0	0.2	1.0%
N42	TP1	2.0	15.2	99.6	0.4	1.8	16.0	0.2	0.6	5.8	11.4	6.9%
M3	TP2	1.4	11.4	65.6	0.2	0.4	6.2	0.0	0.2	1.8	7.3	4.4%
	TP1	0.6	9.4	56.4	0.0	10.2	58.2	0.2	8.2	32.4	11.0	3.1%
N1	TP2	0.2	5.2	39.6	0.0	5.6	31.8	0.0	3.4	13.8	5.4	1.5%
ND	TP1	0.6	1.2	4.2	0.0	0.2	2.6	0.0	0.4	2.6	1.7	3.8%
N2	TP2	0.4	0.8	3.4	0.0	0.2	2.0	0.0	0.2	1.6	1.2	2.6%
	TP1	8.8	5.4	8.8	0.4	1.2	6.2	0.2	1.4	7.6	19.9	10.7%
N3	TP2	7.0	4.4	6.2	0.2	0.8	4.0	0.2	0.4	3.2	15.4	8.3%
N	TP1	0.0	0.2	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.1	3.0%
N _{unknown}	TP2	0.0	0.2	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.1	2.8%
Tatal	TP1	15.0	198.8	1,138.4	1.2	140.6	974.2	1.8	102.6	516.2	190.3	4.3%
Total	TP2	10.8	135.4	773.4	0.8	71.2	492.0	0.6	44.6	220.2	111.7	2.5%


- MOIS Target Population 1
- Total annual societal cost to GB of €190M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Pedestrians most affected casualty
- Ranking of societal costs:
 - M1>N3>M3>N1>N2>M2

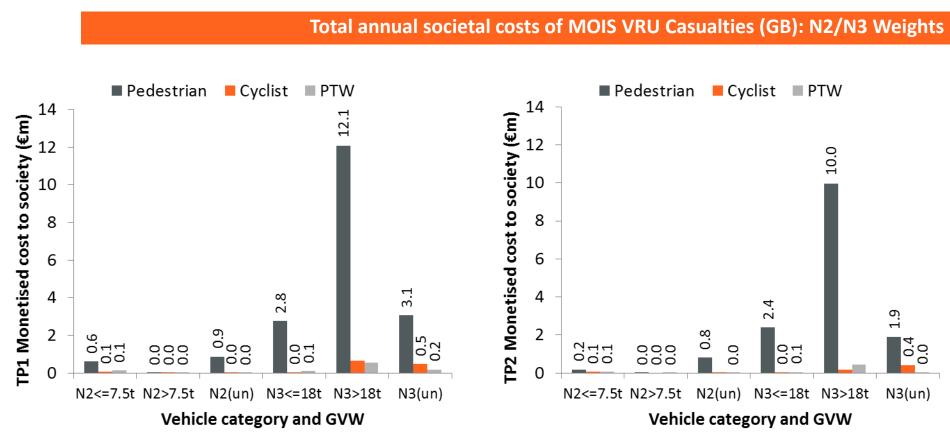
the future of transport.

© 2019 TRL Ltd

Total annual societal costs of MOIS VRU casualties (GB): TP1

- MOIS Target Population 2
- Total annual societal cost to GB of €112M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Pedestrians most affected casualty
- Ranking of societal costs:
 - M1>N3>M3>N1>N2>M2

the future of transport.


© 2019 TRL Ltd

Annual Target Populations for MOIS VRU casualties (GB): N2/N3 Weights

Vehicle	Target	P	Pedestria	n		Cyclist			PTW		Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
	TP1	0.2	0.8	2.6	0.0	0.2	1.4	0.0	0.4	2.0	0.8	2.6%
N2 ≤7.5T	TP2	0.0	0.6	2.0	0.0	0.2	1.0	0.0	0.2	1.0	0.3	1.0%
	TP1	0.0	0.0	0.4	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.0%
N2 >7.5T	TP2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0%
N/2	TP1	0.4	0.4	1.2	0.0	0.0	1.0	0.0	0.0	0.4	0.9	8.6%
N2 _{un_GVW}	TP2	0.4	0.2	1.2	0.0	0.0	1.0	0.0	0.0	0.4	0.8	7.6%
N2 <10T	TP1	1.4	0.6	0.6	0.0	0.0	1.4	0.0	0.4	0.8	2.9	8.9%
N3 ≤18T	TP2	1.2	0.6	0.6	0.0	0.0	1.2	0.0	0.2	0.4	2.5	7.7%
N2 > 10T	TP1	5.8	4.6	6.0	0.2	0.8	4.0	0.2	0.4	4.6	13.3	10.6%
N3 >18T	TP2	4.8	3.8	4.0	0.0	0.6	2.6	0.2	0.2	2.0	10.6	8.4%
N/2	TP1	1.6	0.2	1.8	0.2	0.4	0.8	0.0	0.6	2.2	3.7	13.6%
N3 _{un_GVW}	TP2	1.0	0.0	1.4	0.2	0.2	0.2	0.0	0.0	0.8	2.3	8.4%

the future of transport.

© 2019 TRL Ltd

MOIS Collision Landscape Conclusions Relating to Vehicle Categories

- VRU collisions relevant to MOIS dominated by collisions with M1 vehicles:
 - Should M1/N1 vehicles be considered in scope?
- Ranking of vehicle category priority:
 - Societal costs: M1>N3>M3>N1>N2>M2
 - Proportion of total societal costs for category: N3>M3>M1>N2>N1>M2
 - If N2/N3 considered in scope, should M1, N1, M3 be considered in scope?
- Considering N2/N3 scope exclusions based on GVW:
 - N3>18T has largest TP, N3≤18T second largest TP
 - N2 has small TP, with N2≤7.5T larger than N2>7.5T
- Considering injury severities:
 - N3, N2, M3 all have greater proportion of KSI cost than M1
- Conclusions not affected by selection of target population definition (TP1/TP2)

MOIS Regulatory Scope: Selection of Applicable Vehicle Categories

Direct Vision (DIR)

DIR Target Population Definitions

Top level target population (TP1):

- Vehicle manoeuvre = moving off or slowing/stopping or turning left or turning right
- Vehicle impact = front or nearside or offside

Detailed target population (TP2):

P	edestrian									
Vehicle manoeuvre	/ehicle manoeuvre VRU manoeuvre		Vehicle impact	VRU manoeuvre	VRU impact	Cab-only impacts correction factor				
		Moving off Slowing or stopping	Front	Moving off Slowing or stopping Waiting to go ahead Waiting to turn left/right	-	-				
	Crossing from driver's n/s Crossing from driver's o/s In carriageway, not crossing Walking along back to traffic Walking along facing traffic	OR								
Moving off Slowing or stopping Left turn Right turn		Left turn	Nearside	Left turn Moving off Slowing or stopping Waiting to go ahead Waiting to turn left/right	Offside	0.7				
		OR								
		Right turn	Offside	Right turn Moving off Slowing or stopping Waiting to go ahead Waiting to turn left/right	Nearside	0.7				

DIR Target Population Definitions – Impact Against the Driver Cab

- RAIDS case-by-case analysis of 26 cases of N2/N3 vs. VRU collisions shows:
 - Of the 7 collisions where the VRU impacted the nearside/offside of the vehicle 71% occurred against the driver cab
- TfL case-by-case analysis of 28 fatal cases of M3 vs. VRU collisions shows:
 - Of the 10 collisions where the VRU impacted the nearside/offside of the vehicle 70% occurred against the driver cab
- It is proposed that the following correction factor is applied to the DIR target population for nearside/offside impacts:

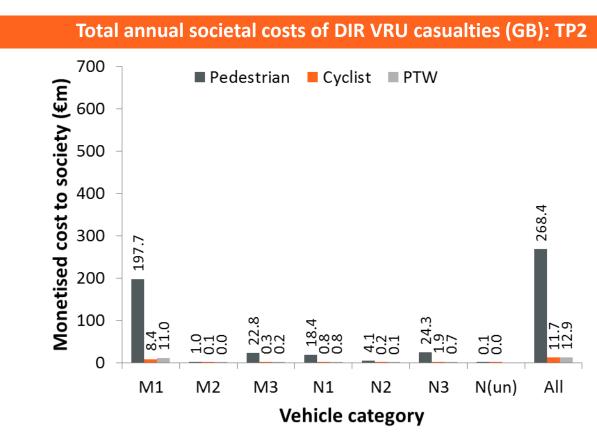
Cab-Only Impact Correction Factor:

70%

Annual Target Populations for DIR VRU casualties (GB)

Vehicle	Target	Pedestrian			Cyclist			PTW			Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
M1	TP1	17.6	691.0	3,442.2	4.0	906.0	5,990.8	51.6	1,359.6	4,363.0	1,113.6	30.4%
	TP2	12.4	523.2	2,529.4	0.0	21.0	174.4	0.0	25.4	258.2	217.0	5.9%
M2	TP1	0.2	3.0	15.4	0.0	2.6	16.2	0.4	3.6	12.2	4.2	25.3%
	TP2	0.2	1.8	8.8	0.0	0.4	0.8	0.0	0.0	1.6	1.1	6.8%
М3	TP1	7.8	62.4	291.0	1.6	10.7	70.9	1.6	9.2	34.0	48.0	29.0%
	TP2	5.4	40.0	161.2	0.0	0.5	10.5	0.0	0.6	4.6	23.4	14.2%
N1	TP1	4.6	55.8	255.6	0.4	86.6	520.4	7.4	111.6	356.2	106.1	29.8%
	TP2	2.8	40.0	184.8	0.0	2.0	19.4	0.0	1.8	22.0	20.1	5.6%
N2	TP1	2.0	7.2	22.2	0.2	6.3	30.1	1.2	6.6	21.5	12.6	27.8%
	TP2	1.4	5.0	14.8	0.0	0.5	2.1	0.0	0.2	2.7	4.4	9.6%
N3	TP1	13.6	19.2	37.4	7.8	21.8	45.4	3.6	17.9	37.8	63.4	34.1%
	TP2	11.0	13.6	23.2	0.8	1.0	5.8	0.2	0.9	6.6	26.9	14.5%
N _{unknown}	TP1	0.2	0.4	0.6	0.0	0.4	3.2	0.0	0.0	0.8	0.7	30.6%
	TP2	0.0	0.2	0.4	0.0	0.0	0.2	0.0	0.0	0.0	0.1	2.8%
Total	TP1	46.0	839.0	4,064.4	14.0	1,034.4	6,676.9	65.8	1,508.4	4,825.4	1,348.5	30.4%
	TP2	33.2	623.8	2,922.6	0.8	25.4	213.1	0.2	28.8	295.6	293.0	6.6%

700 ■ Cyclist ■ PTW Pedestrian 580.0 (€m) 600 508.6 society 500 00 400 9 m ωm cost <u>ں</u> 26 300 Monetised 200 100 ഹ ოთთ 0.5 വസന 10.1 5 NO 0 M1 M2 M3 N1 N2 N3 N(un) All Vehicle category


• DIR Target Population 1

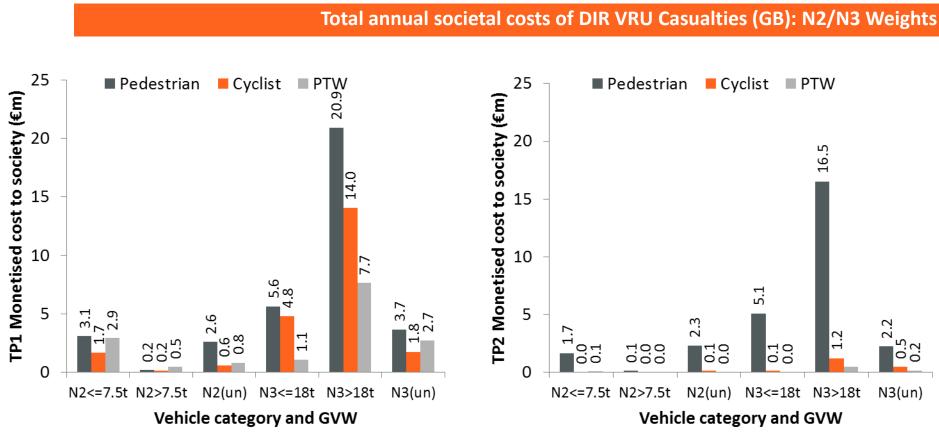
- Total annual societal cost to GB of €1.35bn
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- PTWs most affected casualty (apart from M3/N3 - peds)
- Ranking of societal costs:
 - M1>N1>N3>M3>N2>M2

the future of transport.

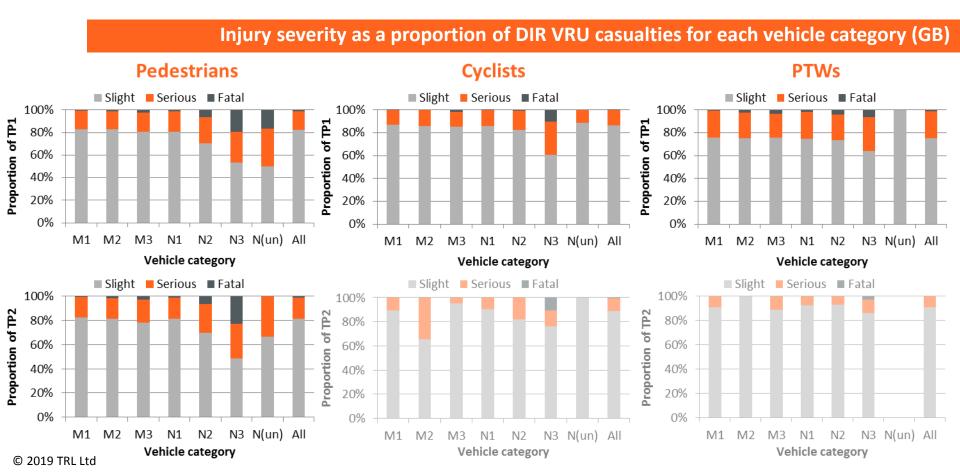
Total annual societal costs of DIR VRU casualties (GB): TP1

- DIR Target Population 2
- Total annual societal cost to GB of €293M
- Collisions between M1 vehicles and VRUs have highest occurrence and societal costs
- Pedestrians most affected casualty
- Ranking of societal costs:
 - M1>N3>M3>N1>N2>M2

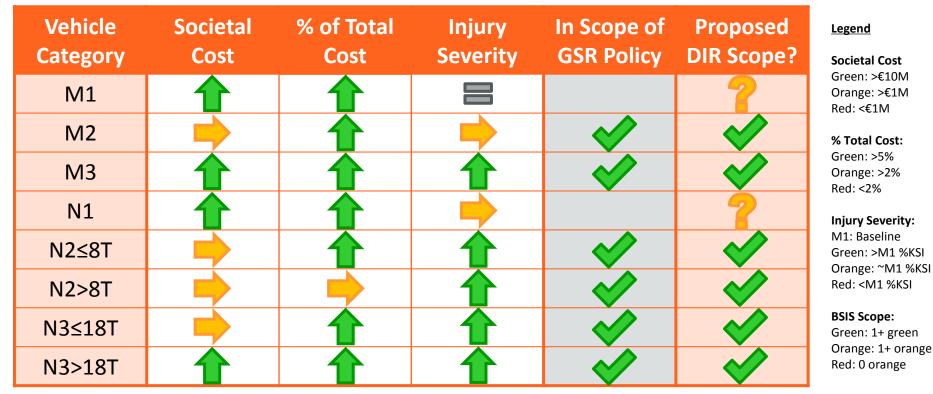
© 2019 TRL Ltd


the future of transport.

Annual Target Populations for DIR VRU casualties (GB): N2/N3 Weights


Vehicle	Target	Pedestrian			Cyclist			PTW			Societal	% of Total
Category	Population	Fatal	Serious	Slight	Fatal	Serious	Slight	Fatal	Serious	Slight	Cost (€M)	Cost (%)
N2 ≤7.5T	TP1	1.0	4.0	14.0	0.2	3.8	19.8	0.8	4.6	16.9	7.7	25.4%
	TP2	0.4	3.0	9.8	0.0	0.0	0.8	0.0	0.2	1.9	1.8	5.9%
N2 >7.5T	TP1	0.0	0.6	2.2	0.0	0.6	1.8	0.2	0.4	0.8	0.9	19.6%
	TP2	0.0	0.4	1.6	0.0	0.0	0.2	0.0	0.0	0.2	0.1	2.2%
N2 _{un_GVW}	TP1	1.0	2.6	6.0	0.0	1.9	8.5	0.2	1.6	3.8	4.1	39.1%
	TP2	1.0	1.6	3.4	0.0	0.5	1.1	0.0	0.0	0.6	2.5	23.8%
N3 ≤18T	TP1	2.6	2.6	7.0	1.6	6.7	9.7	0.2	2.4	6.2	11.5	35.5%
	TP2	2.4	2.0	5.2	0.0	0.5	1.3	0.0	0.2	0.2	5.3	16.3%
N3 >18T	TP1	9.2	13.6	21.4	5.6	12.6	24.8	2.6	9.8	22.0	42.6	33.8%
	TP2	7.4	10.0	13.6	0.6	0.0	3.2	0.2	0.2	4.0	18.2	14.5%
N3 _{unknown_GV} w	TP1	1.6	2.2	8.4	0.6	2.0	9.0	0.8	4.5	7.8	8.2	30.1%
	TP2	1.0	1.2	4.0	0.2	0.4	1.2	0.0	0.5	2.4	2.9	10.6%

the future of transport.



DIR Collision Landscape Conclusions Relating to Vehicle Categories

- VRU collisions relevant to DIR dominated by collisions with M1 vehicles:
 - Should M1/N1 vehicles be considered in scope?
- Ranking of vehicle category priority:
 - Societal costs: M1>N3>M3>N1>N2>M2
 - Proportion of total societal costs for category: N3>M3>N2>M2>M1>N1
 - If N2/N3 in scope, should M3 be considered in scope?
- Considering N2/N3 scope exclusions based on GVW:
 - N2 \leq 7.5T has larger TP than N2>7.5T \Rightarrow should N2 \leq 7.5T be considered in scope?
 - N3≤18T and N3>18T both have larger TP than all N2 category vehicles
- Considering injury severities:
 - All vehicle categories have greater proportion of KSI cost than M1
 - Particularly evident for N3, N2, M3 vehicles
- Conclusions partially affected by selection of TP definition (TP1/TP2) the future of transport.
- © 2019 TRL Ltd Most affected casualty type varies based on TP definition

DIR Regulatory Scope: Selection of Applicable Vehicle Categories

the future of transport.

© 2019 TRL Ltd

In-Progress STATS19 Research: Next Steps

Next Steps

Remaining Collision Landscape Analyses


- Scaling of results
 - Investigate potential for scaling to EU and/or global level
- Investigation of effect of other important STATS19 factors:
 - Causation factors
 - Urban/rural
 - Towing and articulation
 - Body types
 - Wheel plan x engine capacity (VECTO categories)
 - Year first registered
 - Casualty age
 - Light conditions
 - Weather conditions

the future of transport.

Dr Phil Martin Senior Researcher

pmartin@trl.co.uk +44 [0]1344 770 326 TRL | Crowthorne House | Nine Mile Ride | Wokingham Berkshire | RG40 3GA | United Kingdom

