AV Exterior Communications
ISO TC 22/SC 39
GTB meeting
Lisbon, Portugal
November 28, 2018
John Shutko, chair ISO TC 22/SC 39
Outline

Introduction to ISO
Description of ISO TC 22/SC 39
AV Exterior Communication projects
National delegation work
Q & A
Introduction to ISO
22000*
International Standards

100
new standards each month

245*
technical committees

We are an independent, non-governmental organization.

We are a global network of national standards bodies with one member per country.

Our job is to make International Standards.

We are coordinated by a Central Secretariat in Geneva, Switzerland.

We are not for profit; selling our standards allows us to finance their development in a neutral environment, to maintain them and to make new ones.
What is an International Standard?

An International Standard is a document containing practical information and best practice. It often describes an agreed way of doing something or a solution to a global problem.

In short, ISO standards help:

- Make products compatible, so they fit and work well with each other
- Identify safety issues of products and services
- Share good ideas and solutions, technological know-how and best management practices
ISO Structure

- Technical Committee
- Technical Committee
- Technical Committee

- Sub-committee
- Sub-committee
- Working group

- Working Group made up of **experts** from the field
- Experts **nominated** by participating ISO Member Body
- Act in a **personal capacity** & expected to input know-how
- Can also be appointed by Liaison organizations
ISO TC 22 / SC 39
WG 8 Participants

Active Countries - 11
- Canada
- Czech Republic
- France
- Germany
- Israel
- Italy
- Japan
- Netherlands
- Portugal
- Sweden
- US
AV Exterior Communications Projects
Recently published

- ISO / TR 23049:2018, **Road Vehicles -- Ergonomic aspects of external visual communication from automated vehicles to other road users**

 https://www.iso.org/standard/74397.html
New work item proposals

• Technical Report - Road Vehicles - Methods for evaluating other road user behavior in the presence of automated vehicle external communication.

• 14 Approve
• 0 Disapprove
• 6 countries agreed to work on the document
Road Vehicles - Methods for evaluating other road user behavior in the presence of automated vehicle external communication.

Research Approaches
- Approach Introduction
- Controlled Environment
- Uncontrolled Environment
- Future research approaches

Independent Variables
- Road User Types
- Environment
- Use Cases

Dependent Variables
- Encounter Classification
- Environment
- Encounter Partner Action

Subjective Evaluation
New work item proposal

- Technical Specification - Road Vehicles – Ergonomic design guidance for external visual communication from automated vehicles to other road users.

 - 12 Approve
 - 7 Disapprove
 - 7 countries that agreed to work on the document

- Did not have 2/3 majority
- Plan to move forward as a Technical Report
Road Vehicles – Ergonomic design guidance for external visual communication from automated vehicles to other road users.

Outline

• Regulatory or standards considerations
• Cross-industry benchmarking
• Type of message
 o Intent
 o Visual
• Implementation
 o Message design
 o Location
 o Color
National Delegation Work
Japan
Satoshi Kitazaki
【JAPAN】 Pilot study: Negative outcomes of external communication

EXPERIMENTAL METHOD

- Simulated AV with a simulated external HMI approached an unsignalized crosswalk.
- There was another “manual” vehicle approaching the crosswalk from the other side.
- The subjects stood near the crosswalk and pressed a button when he/she felt being yielded and when he/she made a decision to cross.
- Subject’s head motion searching for other approaching vehicles was video-recorded.

Instruction to the subjects
Press the button when;
- You feel being yielded.
- You make a decision to cross the road.
RESULTS AND CONCLUSIONS

- The external HMI negatively influenced 14 subjects out of 56.
- The negative influence was defined as reduced number of checking for possible approaching vehicles before making a decision to cross (NB: the baseline was checking behavior without AV).
- Some subjects did not check the other side of the road at all.
- The subjects may have paid too much attention to the AV sending a message, resulting in poorer attentional allocation to other vehicles.
- No correlations to message meanings and pedestrian types have been found so far.
- Experiments with more subjects are being conducted.

<table>
<thead>
<tr>
<th>Sub No</th>
<th>Age</th>
<th>Attributes</th>
<th>Gender</th>
<th>eHMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
<td>School child</td>
<td>M</td>
<td>Automated driving</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>School child</td>
<td>M</td>
<td>Automated driving</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>School child</td>
<td>F</td>
<td>After you</td>
</tr>
<tr>
<td>35</td>
<td>73</td>
<td>Older, non-licensed</td>
<td>F</td>
<td>Automated driving</td>
</tr>
<tr>
<td>25</td>
<td>46</td>
<td>Younger, Licensed</td>
<td>F</td>
<td>Automated driving</td>
</tr>
<tr>
<td>31</td>
<td>44</td>
<td>Younger, Licensed</td>
<td>F</td>
<td>Going to stop</td>
</tr>
<tr>
<td>46</td>
<td>29</td>
<td>Younger, Licensed</td>
<td>F</td>
<td>After you</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub No</th>
<th>Age</th>
<th>Attributes</th>
<th>Gender</th>
<th>eHMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>10</td>
<td>School child</td>
<td>M</td>
<td>Going to stop</td>
</tr>
<tr>
<td>23</td>
<td>77</td>
<td>Older, non-licensed</td>
<td>F</td>
<td>After you</td>
</tr>
<tr>
<td>24</td>
<td>68</td>
<td>Older, non-licensed</td>
<td>F</td>
<td>Automated driving</td>
</tr>
<tr>
<td>52</td>
<td>77</td>
<td>Older, non-licensed</td>
<td>F</td>
<td>Going to stop</td>
</tr>
<tr>
<td>45</td>
<td>21</td>
<td>Younger, non-licensed</td>
<td>F</td>
<td>After you</td>
</tr>
<tr>
<td>20</td>
<td>31</td>
<td>Younger, Licensed</td>
<td>M</td>
<td>After you</td>
</tr>
<tr>
<td>54</td>
<td>35</td>
<td>Younger, Licensed</td>
<td>M</td>
<td>Automated driving</td>
</tr>
</tbody>
</table>
ANPEB - Analysis of pedestrians-vehicle interaction in simulated urban environments

- The **main goal** of project AnPeb is to describe pedestrian and vehicle interaction at *un-signalized crossings* (no traffic lights), based on the analyses of the behavior of those agents (cars/pedestrians) at specific situations.

- **Outputs:**
 1. Models describing pedestrian-vehicle crash risk (function individual characteristics and perceived risk, road geometry and type of pavement, vehicle traffic, pedestrians traffic);
 2. A simulation tool to be used by technician and researchers.
Behavior assessment in Simulated Scenarios

Condition Static – Comparison Test Environment

- Behavior measured in the VR scenario is similar to the one measured in the real-environment (when we analyze mean Time-to-contact at the moment of crossing)

With this result we assured *relative validity*
• There is a dilemma of consistency of eHMI of the near future and the existing knowledge for their design and usage
• The consistency between brands and the consistency of HMI on one vehicle has to be taken into account
• Current research (e.g. Interact, IMAGINE, DFG, ...) and discussion at conferences (IEA, HFES, ...) has to be taken into account
 But does currently not give clear guidance for designs
• It should be elaborated what has to be avoided signals conflicting with existing signals/regulations
• eHMI should not be the remedy for insufficient realization of AV function
• Proposed steps of action -> next slide
Topics – ISO WG8 Discussion

1. Legal Aspects (type approval, signaling)
2. Communicative needs, acts and messages
 - Who communicates what to whom, when for which reason
3. Technical realisations and requirements
 - Locations
 - Visualisation and Requirements
4. Evaluation methods
 - Scenarios
 - Setups (Laboratory, Simulator, Field)
5. Metrics
 - Measurements or Assessments
 - Statistical Procedures

Which existing (also international) legal aspects must be taken into account for eHMI?

Eventually methods and metrics have to be clarified in parallel order ahead of technical aspects.
Sweden
Patrik Blomdahl
Transports with Automated Vehicles with need for External Communication

Long haulage with Platooning & Hub to Hub

Vehicle types:

- Trucks
- Buses

2017 Volvo Trucks Safety Report focuses on vulnerable road users

Use cases & Statistics from Volvo Trucks Accident Research Team (ART)

Logistic centers

Agriculture

Mining

City distribution

Construction Equipment

VOLVO GROUP TRUCKS TECHNOLOGY

Date: 2018-11-01
Use cases & Swedish research related to Automated Vehicle communication

Habibovic et al 2018 - Communicating Intent of Automated Vehicles to Pedestrians

Pedestrians’ needs in interaction with AVs

- Pedestrians should be able to easily distinguish if a vehicle is in manual or automated driving mode. This will keep the positive effect of eye contact in manually driven vehicles, and avoid possible dangerous situations due to a mismatch between the “drivers” and the AV’s behavior.

- Pedestrians need to obtain information about AV’s future state (i.e., their intent and plans) rather than their current state. This, since the current state is directly observable from the vehicle’s movement, whereas the future state may be difficult to predict due to the lack of driver-centric cues.

- Pedestrians should be provided for information that eliminates the need of seeking eye contact in encounters with AVs. This, in turn, may be difficult for them to deduce any accurate(Audiovisual) information from the eye contact with the “drivers” in AVs.

- Pedestrians should not be told explicitly where to cross the street in encounters with AVs. This, since other road users might pose a risk to the pedestrians that is not known by the AV.

- Pedestrians should experience encounters with AVs as calm and not stressful. Calm pedestrians are more likely to make safe and predictable decisions.

Functional requirement

- Show when a vehicle is in automated driving mode
- Show future state of the AV
- Replace the eye contact
- Not urge pedestrians where to cross (i.e., just communicate the AV’s intentions)
- Enable a calm interaction

Recommended signal characteristics

- Vehicle hirerisation
- Type of vehicle
- Engine sound
- Gestures
- Eye contact
- More
- Flasher heads
- Engine revving
- Driving style

Cues that are important for pedestrian interaction

- Distance
- Speed
- Direction
- Individual (shout, gesture, etc.)
- Clothing
- Eye contact
- Gestures
- Walking style

Exterior (A) & interior (B) of the test vehicle, and the test environment in Experiment 1 (C) 2 (D).
France
Laurette Guyonvarch
Benefits of rear E-HMI for MRM scenarios

Objectives

• Evaluate benefits of rear E-HMI in mixed traffic, high speed scenario
• Evaluate understanding of AV intent and behavior during MRM
• Assess drivers’ acceptance of external HMI

Study

• Comparison of driver behavior with and without specific HMI in a driving simulator
• Interviews + questionnaires on drivers acceptance

Results

• E-HMI decreased reaction time
• Early understanding of situation emergency with E-HMI
• E-HMI preferred to current HMI

Contacts

arnaud.koustanai@lab-france.com
laurette.guyonvarch@lab-france.com
Automated Vehicle Communication and Intent with Shared Road Users
Objectives

- Identify key pieces of information for the AV to communicate to shared road users
- Identify ways to measure communication effectiveness between the AV and shared road users
- Provide research to inform human factors guidance regarding communication of AV intent

UMTRI / Westat project team
Project to be completed: July, 2019

Studies

- Study 1: Structured Interviews of Driver Evaluation Experts – [completed]
- Study 2: Shared Road Users’ Determination of Intent of Other Vehicles (Field Study of drivers, pedestrians, bicyclists) – [data collection complete, analysis in progress]
- Study 3: Testing Concepts for Communication of Intent (Lab Study) – [set up in progress, using projected dynamic video images]

Contact
JamesJenness@Westat.com
Recent VR Study

• Goals
 • Can previous VR study results hold with more complex scenarios?
 • Do light bar signals enable more ‘trust/acceptance’ of AVs?
 • Can these signals be learned?

• Trust
 • Positive impact

• Learnability
 • ~ 2 exposures for single signal
 • 5-10 exposures for all signals
 • The signals are comforting, help people understand what the vehicle will do
Q & A

John Shutko
jshutko@ford.com

ISO standards used everywhere

Engage stakeholders and partners

Use of technology

Communication

Develop high-quality standards through ISO’s global membership

People and organization development