
TFSR-05-04

Equivalence Criteria for LED Substitute Light Sources

Extension to light source categories having no use restrictions = Light sources used in Road Illumination Devices

Walter Schlager

15-January-2019

Additional / modified criteria

80th GRE adopted ...

- GRE/2018/39 (R128)
- GRE/2018/40 (R.E.5, PY21W/LED)
- GRE/2018/41 (R48, ...)
- GRE/2018/42* (R-LSD)

... based on:

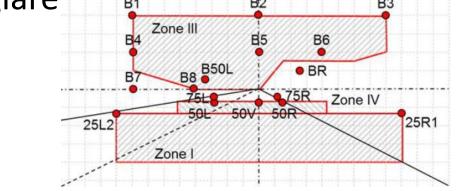
Equivalence Criteria GRE-80-02 →

GRE-80-02

- Test voltage Luminous flux
- ••
- Intensity distribution
- Homogeneity of LEA
- •••
- Spectral content
- Thermal behavior

For use in LSD only

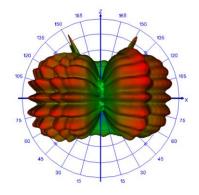
TFSR-05-xx Specific intensity distribution Specific homogeneity of LEA Contrast

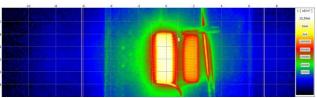

- Test voltage
- Luminous flux
- •••
- Intensity distribution
- Homogeneity of LEA
 - •••
- Spectral content
- Thermal behavior

•••

For use in all devices

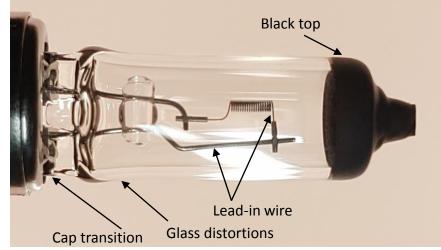
Main difference ...


 Road illumination functions must realize beams with cut-off and with areas of limited glare

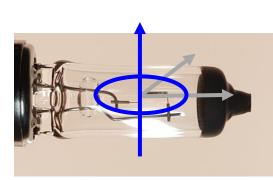


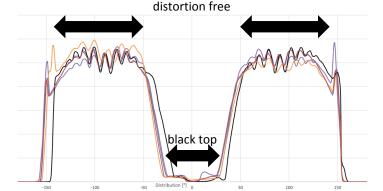
More specific equivalence criteria with respect to ...

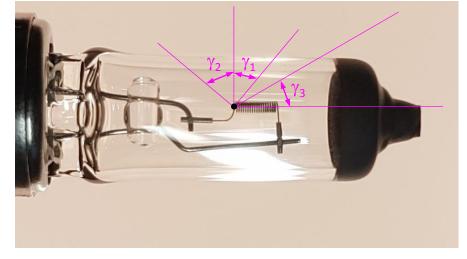
✓ "where does the light go to" (far-field behavior)


✓ "where does the light precisely come from" (near-field behavior)

#1: Intensity distribution ("far field")


- Target: Emulate physical behavior of the emission of a coiled filament
- Specify light emission !
 - predominantly including directions of undistorted glass envelope
 - generally excluding:
 - transition region of the cap
 - proximity of the filament axis
 - area of strong glass distortions (e.g. tips)
 - shading region due to internal elements (e.g. lead-in wires, second filament, shield)
 - black top region




#1: Intensity distribution ("far field")

Proposal:

- Check in three C- γ planes representing the distortion free area (γ_1 , γ_2)
- Limit to [80] ... [130] cd/1000 lm (variation due to glass bulb and coil structure)
- In case of Black-top: upper limit of [10] cd/1000 lm (γ_3)
- Lead-in wire: no specification within [+/- 30°] shading area

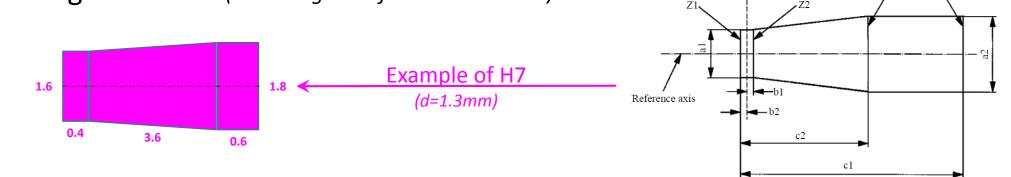
top view

γ = -150

γ = +150°

From R37 sheet From measurements

#2: Direct Flux Ratio (DFR)

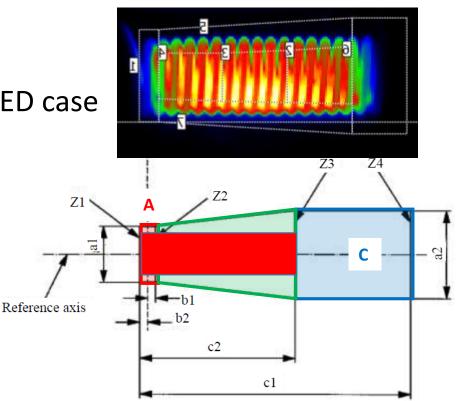

- Translate "indirect" light emission of a filament light source into an upper limit requirement for the Substitute light source
 - "ghost image" of filament
 - Reflections from lead-in wire and glass construction
 - Scattering from glass bulb
- Specify minimum "Direct-Flux-Ratio" (DFR)
 - Luminous flux emitted from whole filament box ("A+B+C")
 - Relative to luminous flux emitted from whole bulb ("all")

•
$$DFR = \frac{A+B+C}{"all"} > [90\%]$$

"A+B+C"

#3: Size / position of light-emitting-area

- Different situations exist:
 - Single filament in axial direction (mainly trapezoidal box definition)
 - Single filament in transversal direction (butterfly box definition)
 - Double filaments without shield/baffle
 - Double filaments with shield baffle
- Proposal in case of single filament in axial direction
 - Same box shape, same box dimensions
 - Three viewing directions (excluding view from lead-in wire)

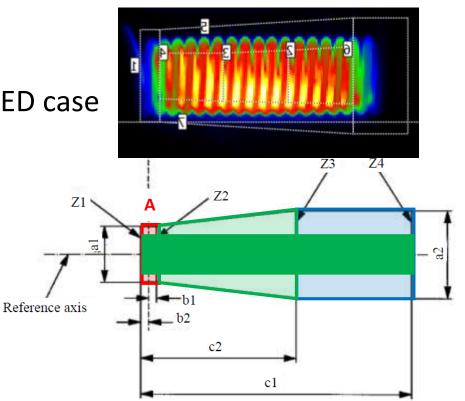

25 mm to

reference plane

Z4

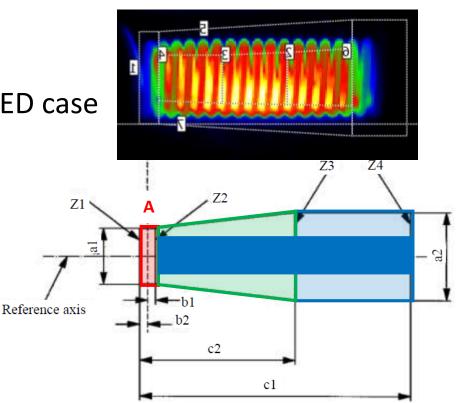
73

- Translate extreme position and dimension of filament case into homogeneity requirements of LED case
- Specify accordingly minimum and maximum limits for the different parts of the LEA
 - Maximum for part A: max. > $\frac{A}{A+B+C} = \frac{b1+b2}{c2}$
 - Minimum for part B: min. $<\frac{B}{A+B+C}=\frac{c2-b1-b2}{c1}$
 - Maximum for part C: max. > $\frac{C}{A+B+C} = \frac{c1-c2}{c1-b1-b2}$
 - Three viewing directions (excluding view from lead-in wire)


A: contains left end turn of filament B: is covered by filament horizontally C: contains right end turn of filament

- Translate extreme position and dimension of filament case into homogeneity requirements of LED case
- Specify accordingly minimum and maximum limits for the different parts of the LEA

• Maximum for part A: max. >
$$\frac{A}{A+B+C} = \frac{b1+b2}{c2}$$


• Minimum for part B: min. $< \frac{B}{A+B+C} = \frac{c2-b1-b2}{c1}$

- Maximum for part C: max. > $\frac{C}{A+B+C} = \frac{c1-c2}{c1-b1-b2}$
- Three viewing directions (excluding view from lead-in wire)

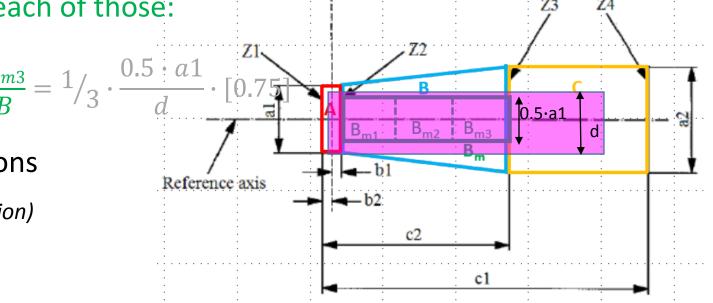
A: contains left end turn of filament B: is covered by filament horizontally C: contains right end turn of filament

- Translate extreme position and dimension of filament case into homogeneity requirements of LED case
- Specify accordingly minimum and maximum limits for the different parts of the LEA
 - Maximum for part A: max. > $\frac{A}{A+B+C} = \frac{b1+b2}{c2}$
 - Minimum for part B: min. $< \frac{B}{A+B+C} = \frac{c2-b1-b2}{c1}$
 - Maximum for part C: max. > $\frac{C}{A+B+C} = \frac{c1-c2}{c1-b1-b2}$
 - Three viewing directions (excluding view from lead-in wire)

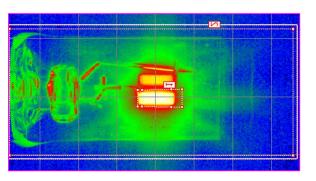
A: contains left end turn of filament B: is covered by filament horizontally C: contains right end turn of filament

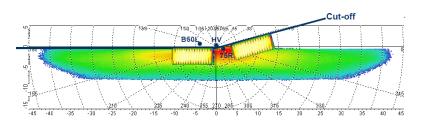
- Simulate in the core part (B) a filament in more detail:
 - Apply a central part B_m and specify a minimum:

$$\frac{B_m}{B} = \frac{0.5 \cdot a1}{d}$$


- Divide it in three horizontal parts $\rm B_{m1},\,B_{m2},\,B_{m3}$

... and specify a minimum for each of those:


$$\frac{B_{m1}}{B} = \frac{B_{m2}}{B} = \frac{B_{m3}}{B} = \frac{1}{3}$$


• Check in three viewing directions

(excluding direction of lead-in wire position)

#5: Contrast

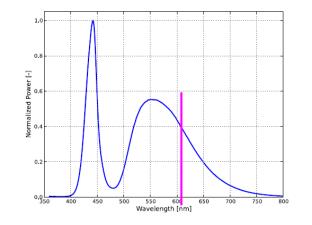
- Translate contrast situation of a filament light source into equivalent contrast criteria
- Specify a minimum value of flux ratio between two areas
 - bright area = box "A+B+C"
 - dark area = "glare"
 - distance X = 0.4mm*
 - Check in two viewing directions ("glare box" is diametrically opposite of the lead-in wire)

➤ "A+B+C"/"glare" > [100]**

- * derived from the optical magnification of typical Halogen headlamps, where a minimum contrast in the beam must be achieved between 75R and HV
- ** number confirmed by measurements of H7 filament samples)

From R37 sheet

From measurements


",glare" = rectangle having 1.5 times the width of A+B+C,

1.5 times the height of C, and is located at a distance X from C

#6: CCT resp. spectral content

- Substitute categories for road illumination devices (e.g. H7/LED) will not be used behind red or amber cover lenses
 → no CCT requirement
- All white light sources used for road illumination need to have sufficient red content
 - → specify minimum red content (like for HID and other LED based solutions)

$$k_{red} = \frac{\int_{\lambda=610 \text{ nm}}^{780 \text{ nm}} E_{e}(\lambda) V(\lambda) d\lambda}{\int_{\lambda=380 \text{ nm}}^{780 \text{ nm}} E_{e}(\lambda) V(\lambda) d\lambda} \ge 0,05$$

From UN regulation From measurements

Next Steps

Proposal:

- Update "Equivalence Criteria" (GRE-80-02) to cover categories used in road illumination devices
- Draft first <u>R.E.5 category sheet</u>, e.g. "H7/LED"
- If needed, amend <u>R128 body text</u>
- Amend <u>R-RID</u>, corresponding to amendment of R-LSD
- No further amendment to installation regulations