GRE TF S/R: Options for LED Retrofits

P. Plathner

W. Schlager

T. Torma

2019-01-30

General

Option 1: All parameters equivalent

PRO: easy to use, "plug-and-play"

CON: too complex for today technology, limited energy saving potential

Option 2: Few parameters not equivalent, combined with customer information

PRO: achievable with today technology, high energy saving potential

CON: consumer education required, users must follow "instructions for use"

LED "Substitute" parameters \rightarrow already equivalent

- Photometric and colorimetric
 - Luminous flux
 - Intensity distribution
 - Position and characteristics of LEA
 - Color, especially limit white to <3000K (for signaling light sources)
- Geometric / mechanical
 - Maximum outline dimensions
 - Light Center Length
 - Cap/holder system
 - Maximum weight (IEC 60810)
- Electrical
 - Connector
 - Test voltage incl. range (9 to 14V)
 - EMC (according to R10)
 - No light in first 2ms
- Thermal
 - Testing at 80°C ambient
 - 1min / 30 min ratio
 - · Base temperature (via maximum wattage)

LED "Substitute" parameters \rightarrow not yet equivalent

- Electrical
 - Typical power consumption (for failure detection based on typical filament behaviour)
 - → impact: potentially "false" failure message
 - PWM dimming behavior (dual function use of a single filament e.g. tail/stop with P21W)
 - → impact: potentially wrong operation of minor function
- Thermal
 - Performance at very high ambient temperature (e.g. above a high-wattage light source in the same cavity)
 - → impact: potentially early failure

Conclusion for the Retrofit-case

Option 1: All parameters equivalent

→ need to "solve" the three "not yet equivalent" items

Option 2: Few parameters not equivalent

- → combine with customer information / warning message
- → address the three "not yet equivalent" items in the user instructions

The choice between Option 1 and Option 2 could be light source category specific.

Possible options for legal use of LED Retrofits

1. R37 light source approval

2. R128 light source approval + national/regional permission for the use

3. National/regional solutions

Back-up Material "Failure Detection System"

Most common failure detection method ...

- → Only max. filament power defined, but ...
- → Filament physics give typical range

- → If FDS present, then LED replacement solutions do not work properly in all vehicles
- → artificially increase power consumption ?? ... loss of CO2 emission reduction

... also used: Presence check when off ...

... "OFF-FD"-method

- → comfort function in some functions/vehicles
- → apply short voltage pulse, detect current

For Substitutes, it has been solved.
Will be taken over and solved for Retrofits, too.

Source: ELMAPS 2014, based on top-ten selling models in EU