

HORIZON 2020

Call: H2020-GV-2016-2017

Technologies for low emission light duty

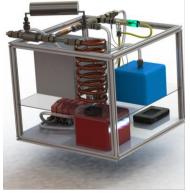
powertrains

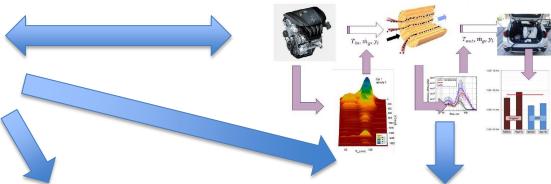
Consortium

In collaboration with:

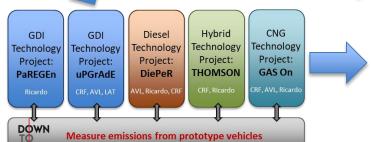
The University of California at Riverside,

Tokyo Denki University(Japan) and National Metrology Institute (Japan)





Objectives & Targets

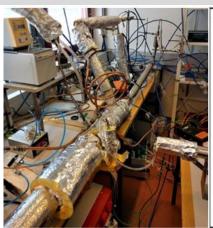

1. Develop instrumentation and sampling set-up to measure exhaust particles as small as 10nm

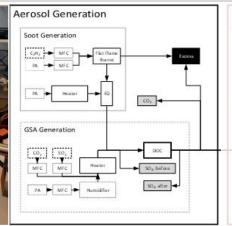
2. Develop models to understand particle transformation from the tailpipe to sampling and then to the atmosphere

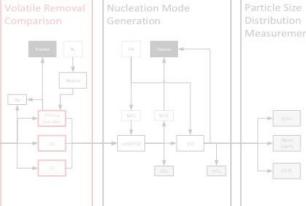
3. Use new setup to measure latest vehicle technologies (collaboration with parallel H2020 projects)

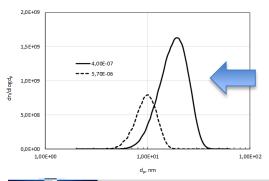
4. Synthesize results to provide policy recommendations (WP5)

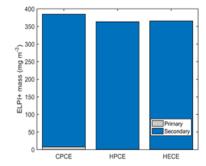
DTT Summary Matrix

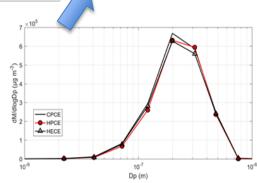

WP	Objectives	Products/deliverables	Status
WP2	 Definition of key particle properties, emission and measurement conditions Instruments and sampling set-ups 	 Evaluation of the performance of chosen techniques Demonstrator of synthetic aerosol bench 	Completed
WP3	 PN <23 nm sampling configuration, methodology and chemical characterization Modelling of particle processes 	 Sampling configuration for laboratory testing and PEMS - Demonstrator unit / Test protocol Simulation model 	Completed
WP4	 Testing and further improving the systems proposed in WP2 and WP3 Development of RDE PN testing procedures 	 Test matrix and test protocols for several technologies, fuels and driving patterns PN PEMS demonstrator / methodology 	Close to completion
WP5	 Analysis of DTT measurements to explain technology-specific issues in collaboration with 'vertical' Projects (uPGrAdE, PaREGEn and DiePeR) 	 Consolidation of a reproducible and reliable measurement procedure for PN< 23 nm both for laboratory and RDE Recommendations for emission regulations Emission factors for models and estimates 	On going




PMP meeting April 2019 – DTT Update

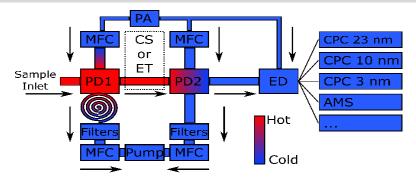

DOWN WP2: Evaluation of the performance of chosen techniques/ **Demonstrator of synthetic aerosol bench**

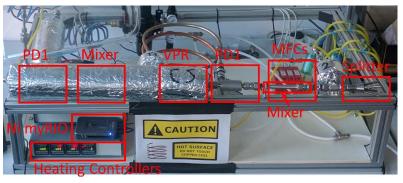




Example of secondary aerosol formation test with different sampling systems: total mass concentrations (left); size distributions (right)

Example of possible solid particle measurement artefact through nucleation process in dilution cooling. Binary sulfuric acid –water system nucleation and growth with two GSA mole fractions





WP3: PN<23 nm sampling configuration for laboratory testing and PEMS (DTT lab based system - 1st prototype)

Low loss sampling system

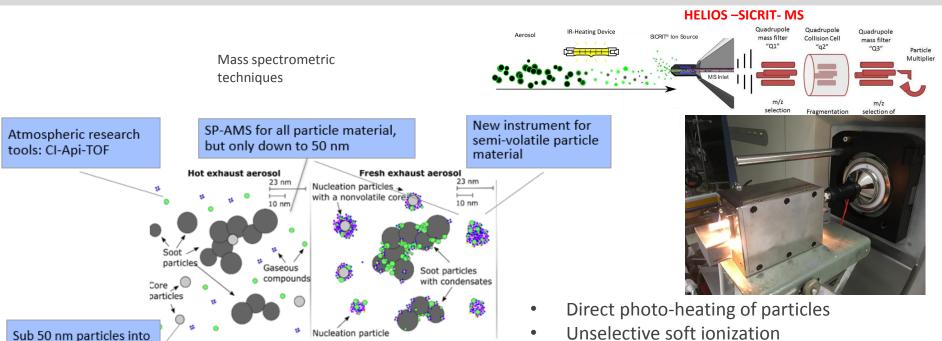
Flexibility in sampling

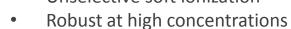
- Opt. 1: Current PMP
- Opt. 2: Enhanced VPR including CS
- Opt. 3: No VPR (SOA studies)

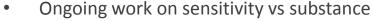
Capacity for PN-PEMS

- Counterflow denuder / increased sensitivity
- Low energy consumption (~100 W)
- Battery-powered

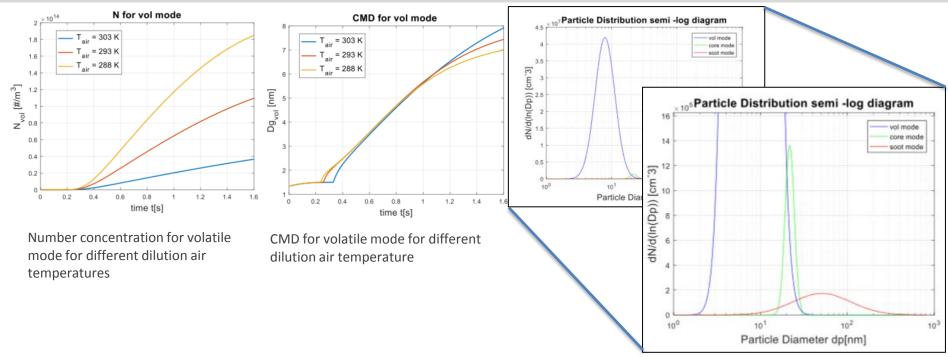
Possibility for different PN modes


- Non-volatile primary
- Delayed primary
- Secondary



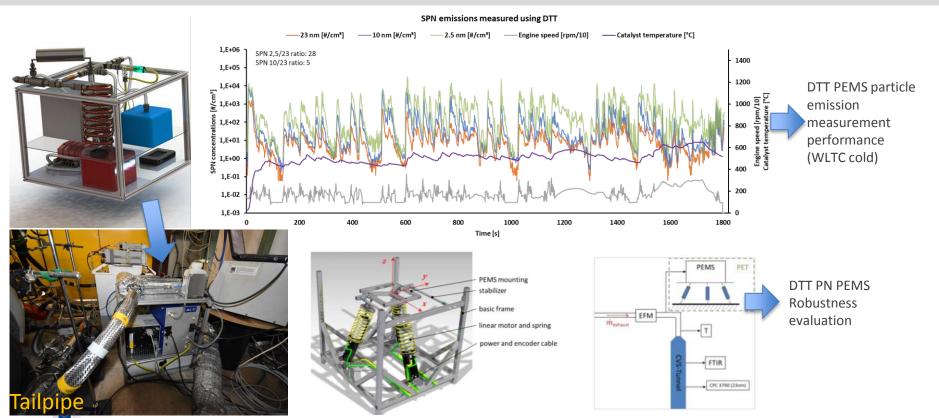

PMP meeting April 2019 – DTT Update

WP3: PN <23 nm chemical characterization



SP-AMS: Agglo-inlet

WP3: Modelling of exhaust particle processes from emission to dilution (Diesel exhaust)



Particle Distribution consisted of distinct modes at the end of ageing chamber

WP4: Development of RDE PN testing procedures

Timeteble: 3-month extension requested

		Year 2										Year 3													- Kensio			
WP	Workpackage/Task	13	14	15	16	17	7 1	8 1	9 2	0 2	1 22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	1	2	3
1	Project Management																								1			
1.1	Technical project and periodic progress reports																										- 1	
1.2	Contractual, administrative and financial project management																								1			
D	Deliverables												1.5															1.6
	Definition of key particle properties,emission and																											
2	measurement conditions-identification of available instruments																											
	and sampling set-ups																											
2.1	Survey of exhaust particles and their properties																											
2.2	Identification of available instruments and sampling set-ups																											
	Assessement of sampling and instrumentation methods with		A																									
2.3	laboratory aerosols		_																									
D	Deliverables		2.3																									
3	Evaluation of sampling conditions and measurement set-ups																									\Box		
3.1	Equipment and sampling set-up									_																		
	Testing measurement systems with challenging internal combustion																											
3.2	engine aerosols										1			l	1											l I	1	
3.3	Raw vs. dilute particle sampling modelling																											
D	Deliverables					3.1				3.2																		
4	Development of test protocols and performance of testing																											
	campaign							_																			_	
4.1	Development of a PN PEMS demonstrator unit							_		_																\perp		
	Test protocol and set-ups robustness - Testing measurement																											
4.2	systems with challenging internal combustion engine aerosols																											
4.3	Summary of the test results and set-up of a common database					_		_		_	\bot								_							\perp		
4.4	Evaluation and recommendation of RDE relevant methods					_		_		_	_											_				\vdash	_	
D	Deliverables										4.1											4.3		4.4				
5	Synthesis and evaluation of testing results, incl. metrology																											
	Proposal of up to date PN emissions measurement procedures for																											
5.1	laboratory and real driving conditions																											
	Proposal of potential regulatory limit values and conformity factors for																								\mathbf{A}			
5.2	PN emissions					_		_		_																		4
5.3	Assessment of the implications of potentially un-regulated particles					_	1	_		_														_				4
5.4	Final summary report					_		_		_		_																
D	Deliverables																					5.1					5.2	5.3
6	Dissemination and Exploitation of Results																											
6.1	Promotional material, incl. project flyers																											
6.2	Stakeholder mapping and Dissemination plan																											
6.3	Website and Interactive Communication Platforms																											
6.4	Newsletter																											
6.5	Scientific & technical paper publications and policy briefs																											
6.6	Stakeholder Events, Science-Policy Dialogue events																											
6.7	DownToTen – Legacy Exploitation Plan							1																				
D	Deliverables				6.10									6.9 6.11					6.5					6.12 6.13			6.6 6.7	
			oria	inal a	annt			Dela	.,	-	Extens	ion	D	eliveral	blo		Milesto											

Extension because:

- Additional time needed for in-depth analysis
- Limited output of linked technology development projects (uPGrAdE, PaREGEn and DiePeR) in current timeframe

PMP meeting April 2019 – DTT Update