Sub 20 nm generation of soot particles using the VSP-G1 nanoparticle generator

Roeland Dijkema, MSc
Brussels, 3rd of April 2019
We make machines that produce nanostructured materials. Our philosophy is that these machines should be simple to operate and based on a scalable principle.
VSPARTICLE timeline

1988
Invention of spark ablation by Andreas Schmidt-Ott

2014
Start of VSPARTICLE, development of the G1

2017
3 Launching customers
Full management team covering all angles of business

2018
International expansion to research oriented markets in the Americas, Europe and Asia
<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency Range</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1-300 Hz</td>
<td>~ milligrams</td>
</tr>
<tr>
<td>Industry</td>
<td>10,000-25,000 Hz</td>
<td>~ 100s milligrams</td>
</tr>
</tbody>
</table>
Technology

Spark ablation

• Ablation/evaporation and condensation
• Electric discharge
 \[\approx 10^4 \text{ K}, \approx 10^{-5} \text{ s} \]
• Rapid quench
 \[\approx 10^7 \text{ K s}^{-1} \]
• ‘Mild’ conditions
• Versatility
 • Metals
 • Carbon
 • Oxides
 • Alloys

Fig. 1. Schematic of the generator.

How particle growth works in the system

Particle Production inside G1

The process takes place under atmospheric conditions.
Technology
Particle formation in sparks

• Smoluchowski:

\[\frac{dN}{dt} = -\frac{1}{2} \beta N^2 \]

\[dp \propto N^{-\frac{1}{3}} \]

• Controlled through voltage, current and flow

\[N_0 \propto \frac{m}{Q} \propto \frac{UI}{Q} \]

\[\bar{t} = \frac{V}{Q} \]

\[dp \propto \left(\frac{Vm}{Q^2} \right)^{\frac{1}{3}} \]

Possibilities with G1
VSP-G1 design
Flexible flow configurations
VSP-G1 design
Flexible flow configurations

(a) A pair of hollow, silver electrodes.
(b) The spark chamber, connections are numbered from 1 to 4.
(c) Configuration 1.: Flow through the electrodes.
(d) Configuration 2.: The classical crossflow configuration.
VSP-G1 design
Au, Ar, Crossflow

Ag, 1.7kV, 4 mA, 4 slm

- Tuneable size distribution
- Crossflow highest concentration
- Throughflow smallest mean diameter
Size-selected stability

Output VSP-G1 example

Material: Copper
Carrier Gas: Argon
Flowrate: 1 L/min
Voltage: 1.0 kV
Current: 5.0 mA
Stability of 5 nm particles
StDev: <2%

Measured with DMA (Differential Mobility Analyzer) + Electrometer & FD/C

Results
Size-selected stability measurement

Results

Stability measurement

Warm up
Measurement

μ, σ

σ = 3.4%
σ = 1.5%
σ = 1.7%
σ = 1.3%

0E+0
1E+5
2E+5
3E+5
4E+5
5E+5
6E+5

0 500 1000 1500

0
500
1000
1500

0
500
1000
1500

0 500 1000 1500

Particle count [cm⁻³]
Time [s]
Gap Voltage [kV]

Particle Count Voltage setpoint Gap Voltage

• Particle Count
• Voltage setpoint
• Gap Voltage
VSP-G1 emission experiments

Carbon output

Results

- 1.3 kV, 8 mA, 20 SLM
- 1.3 kV, 8 mA, 15 SLM
- 1.3 kV, 8 mA, 10 SLM
- 1.3 kV, 8 mA, 5 SLM
- 1.3 kV, 8 mA, 2 SLM
VSP-G1 emission experiments

Carbon output

Results
Who is already using it

Some of our customers

TU Delft

Universiteit Leiden

TU Clausthal

Universiteit van Amsterdam

UNIVERSITY OF TWENTE.

Utrecht University

MESA+ INSTITUTE FOR NANOTECHNOLOGY
VSP-G1 Nanoparticle Generator

• R&D scale generator
• Commercially available
• Outputs an aerosol of nanoparticles
• Specifications:
 • Particle size between few atoms to 300 nm
 • Particle generation rate approx. 1 ~ 10 mg/h
 • Particle concentration $10^8 \sim 10^{11} \text{ cm}^{-3}$
Thank you!

The VSPARTICLE team
vspanicle
Carbon output

(Dekati Elpi+)
Spark ablation Setup
Self-charging

No neutralizer in setup

- Self-charging in plasma
- Electrostatic precipitation
- Electrostatic force towards HV Electrode
- Small particles overpresented

Tabrizi et al. 2015
Flow configuration

Influence on Size distribution

- Tuneable size distribution
- Crossflow highest concentration
- Throughflow smallest mean diameter

Ag, 1.7kV, 4 mA, 4 s/lm
Flowrate
Influence on size distribution

- At highest flowrate only primary particles
- Dilution at higher flowrate
- Current, Voltage Influence