
Current status and draft plan of round-robin tests

Transmitted by Japan

5th Meeting of the informal working group on GTR No.13 (Phase 2)5-7 March 2019 @ Powertech Labs, BC, Canada

Participant institutes, material, and remaining bars

φ 25 mm × L500 mm × 12 bars

SUS316L (MPA)

Supplied numbers of bars

SNL	3 bars
MPA	2 bars
HYDROGENIUS	7 bars

Heat	С	Si	Mn	Р	S	Ni	Cr	Mo	Ν
MPA	0.019	0.49	1.41	0.029	0.024	12.19	17.13	2.05	_
Require ment ¹⁾	≤0.03	≤1.00	≤2.00	≤0.045	≤0.030	12.00 ~ 15.00	16.00 ~ 18.00	2.00~ 3.00	_

Chemical composition (mass%)

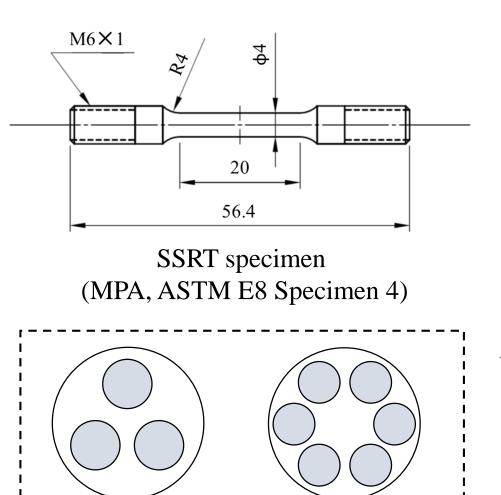
1) JIS G 4303 (1981), "Stainless steel bars"

 $Ni_{eq} = Ni + 12.6C + 0.35Si + 1.05Mn + 0.65Cr + 0.98Mo = 27.2 mass\%$

 $\sigma_{0.2}$ [MPa] Elongation [%] Heat $\sigma_{\rm B}$ [MPa] RA [%] HBW **MPA** 245 551 60 78 141 Requirement¹⁾ ≥175 ≥480 ≥40 ≥ 60 ≤167

Mechanical properties

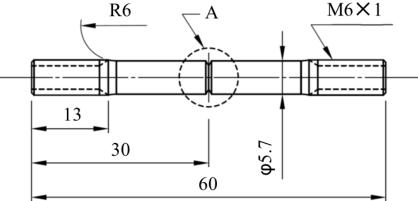
1) JIS G 4303 (1981), "Stainless steel bars"


Test procedures of round-robin test

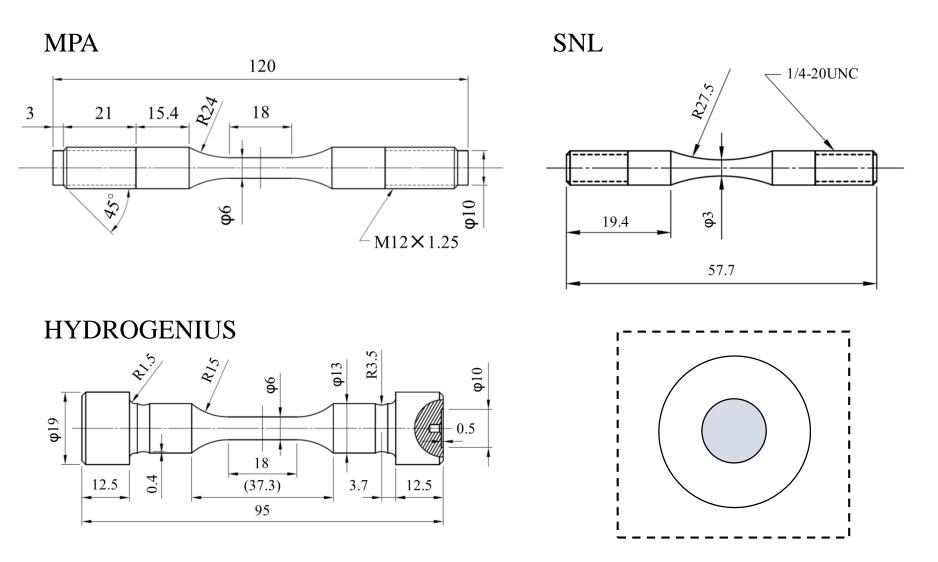
Test condition and required numbers of specimens for each test

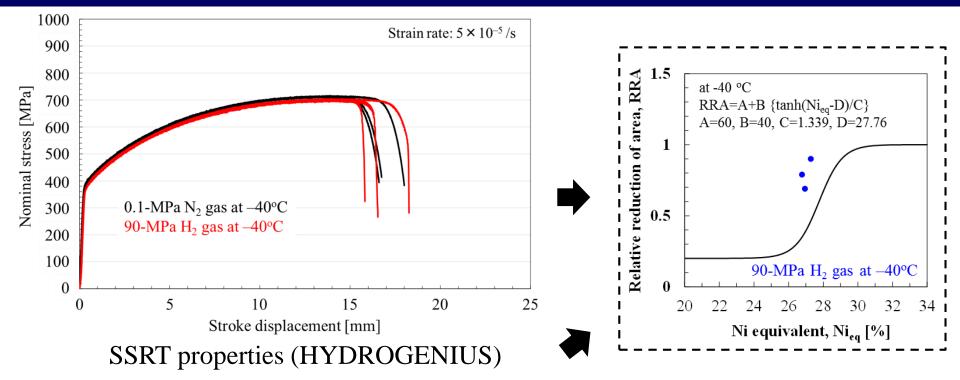
Test	Environment	Condition	Number of specimens
CCDT -4 400C	0.1-MPa N ₂ gas	5 10 ⁻⁵ /	3
SSRT at -40°C	90-MPa H ₂ gas	5×10^{-5} /s	3
Notch fatigue at $R = 0.1$ at -40° C	0.1-MPa N ₂ gas	1Hz, σ_a =200 MPa σ_{max} =444 MPa, σ_{min} = 44 MPa	3
	90-MPa H ₂ gas		3
Smooth fatigue at $R = -1$ at -40° C	0.1-MPa N ₂ gas	1Hz, σ_a =320 MPa σ_{max} =320 MPa, σ_{min} = -320 MPa	3
	90-MPa H ₂ gas		3

Manufacture of specimens The SSRT specimen was manufactured by MPA The circumferentially-notched specimen was manufactured by SNL. The smooth, round-bar specimen was manufacture by HYDROGENIUS.


Specimen geometries (SSRT and notched specimens)

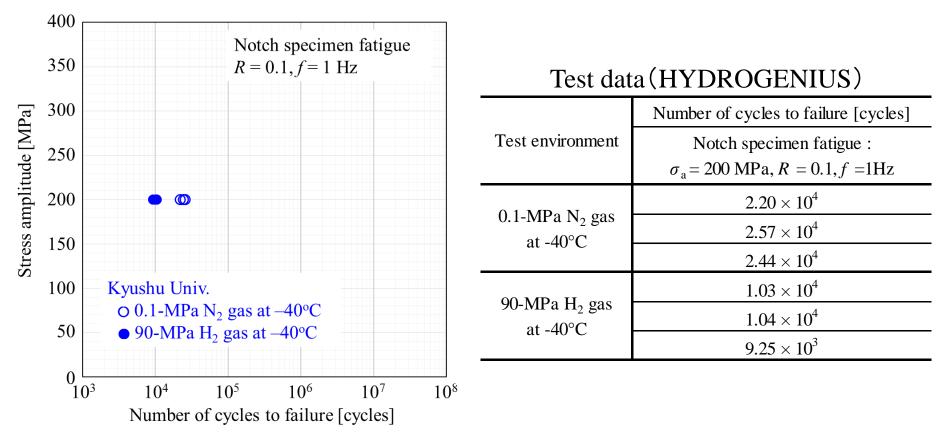
Notched specimen


SSRT specimen


Circumferentially-notched specimen (SNL, K_t =4.1)

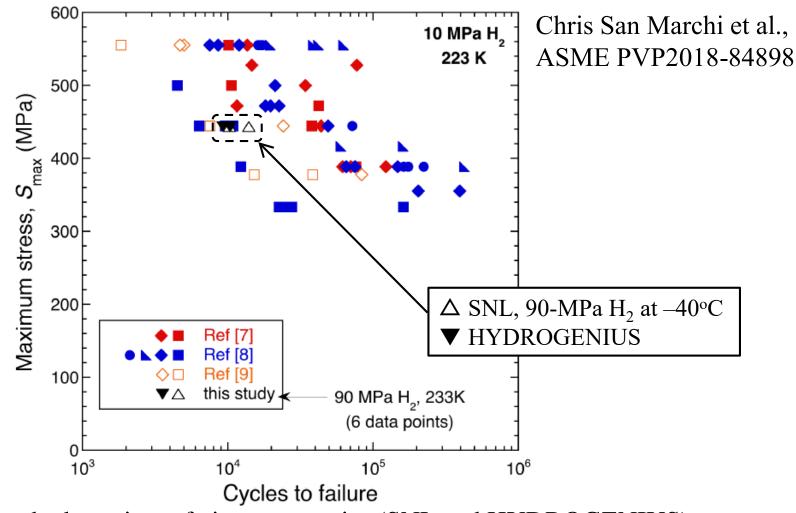
Specimen geometries (smooth, round-bar specimens

Smooth, round-bar specimens (manufactured by HYDROGENIUS)


Results of SSRT test

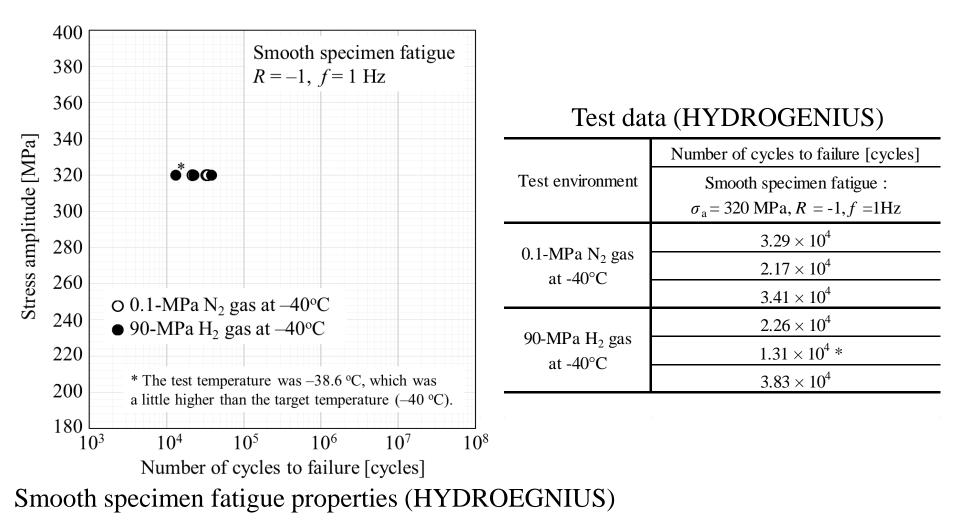
Test data (HYDROGENIUS)

Test environment	SSRT properties under a strain rate of 5×10^{-5} /s					
	Tensile strength [MPa] Elongation at failure [%]		Reduction in area [%]			
0.1-MPa N ₂ gas at –40°C	716	81	84			
	716	84	83	Average RA: 84%		
	716	90	85			
90-MPa H ₂ gas at -40°C	704	94	76 (RRA =	= 0.90)		
	703	79	66 (RRA = 0.79)			
	699	75	58 (RRA =	= 0.69)		


Results of notched specimen fatigue test (HYDROGENIUS)

Notched specimen fatigue properties (HYDROGENIUS)

In HYDROGENIS, all the tests (3 tests at each environment) were finished.
At -40°C, the notch fatigue life was shorter in 90-MPa hydrogen gas than 0.1-MPa nitrogen gas.


Results of notched specimen fatigue test (SNL)

Notched specimen fatigue properties (SNL and HYDROGENIUS)

In SNL, 3 tests in 90-MPa hydrogen gas were finished (no reports from MPA).The experimental results from SNL and HYDROGENIUS were nicely consistent.

Results of smooth specimen fatigue test (HYDROGENIUS)

In HYDROGENIS, all the tests (3 tests at each environment) were finished.
There are no reports from SNL and MPA.

Current status of round-robin test					
Institute	Environment	SSRT	Notched specimen fatigue	Smooth specimen fatigue	
CNI	H_2	0	3 (finished)	0	
SNL	Inert	0	0	0	
MPA	H_2	0	0	0	
	Inert	0	0	0	
KU	H_2	3 (finished)	3 (finished)	3 (finished)	
	Inert	3 (finished)	3 (finished)	3 (finished)	

Current status of round robin tast

Draft plane of round-robin test

- At China and Korea, notched specimen fatigue in H₂ gas (3 specimens) and smooth specimen fatigue in H₂ gas (at maximum, 3 specimens)
- Supply the notched specimen from SNL
- Supply the raw material for the smooth specimen (φ25 × L275mm) from HYDROGENIUS. The specimen geometry of the smooth specimen can be determined at each institute.

Notch fatigue at $R = 0.1$ at -40° C	0.1-MPa N ₂ gas	1Hz, σ_a =200 MPa	3
	90-MPa H ₂ gas	σ_{max} =444 MPa, σ_{min} = 44 MPa	3
Smooth fatigue at	0.1-MPa N ₂ gas	1Hz, σ_a =320 MPa	3
$R = -1$ at -40° C	90-MPa H ₂ gas	σ_{max} =320 MPa, σ_{min} = -320 MPa	3

Draft schedule

- 1. Supply the notched specimen and raw material
- 2. Finished of fatigue test in H_2 gas

- : April, 2019
- : September, 2019

Thank you for your attention