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Definitions

Heat release rate
(HRR)

Specific heat release
rate (HRR/A)

Heat flux, q"

Fire resistance rating
(FRR, required by

first responders — EU
HyResponse project)

Heat release rate in a fire [kW]
(can easily be measured by
propane flow rate to a burner).

Heat release rate in a fire, HRR,
divided by the area of fire source,
A, [kW/m?]

Heat flux on tank surface [kW/m?]
(not the same as HRR/A even
dimension is the same!).

Time from burner ignition until
container rupture in a fire (without
TPRD or failed TPRD or localised
fire far from TPRD)
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Part 1. Enqgulfing fire



GTR#13 temperature requirements
6.2.5.2. Engulfing fire test

GTR#13 fire test requirements:

“Within five minutes after the fire is ignited, an average

flame temperature of not less than 590°C (as determined

by the average of the two thermocouples recording the

highest temperatures over a 60 second interval) is attained

and maintained for the duration of the test.”
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JARI test with blanket burner
Description

Propane (C3H8) flow rate V=100 NL/min (=3 g/s),
blanket burner of area A=0.6 m? with HRR=0.137 MW.
Thus, specific heat release rate is HRR/A=0.228 MW/m?.
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Ulster model (blanket burner test)

= Similar to JARI test the area of “blanket burner” is
A=0.6 m? (LxW=1.2x0.5 m). Velocity release: 3 mm/s.

= Burner is positioned 0.5 m above the ground.
= Large calculation domain: 15x15x15 m.

= Conjugate heat transfer from the fire to the
Type 3 tank (LxD=0.9x0.3 m). 50

_%

Fire source

15m

Burner and tank




Temperature, °C

Temperature, °C

Blanket burner: HRR/A=0.228 MW/m?2
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Blanket burner: HRR/A=0.228 MW/m?2

Temperature: tank side (left)
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Blanket burner: HRR/A=1 MW/m?

Temperature, ©C
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Blanket burner: two different HRR/A
HRR/A=0.228 MW/m? HRR/A=1 MW/m?

> | -

[ 590°C (GTR#13 min required) [l 1030°C [ ] 1230 °C



Blanket burner: ¢'' depends on HRR/A

GTR#13 temperature is satisfied but heat flux to tank (q") is different

Maximum heat flux, kKW/m?2
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FRR dependence on HRR/A

20 € C3HS8 fire - CFD simulation (JARI), HRR/A=0.228 MW/m?2, Type Il tank
V' C3H8 fire - CED simulation (JARI), HRR/A=1 MW/m2, Type lll tank
- 18 A CH4-air fire (Germany), HRR/A=0.291 MW/m?, Type IV tank
= V¥ CH4-air fire (Germany), HRR/A=0.618 MW/m?, Type IV tank
S 16 'i € C3HS8 fire (USA), HRR/A=0.652 MW/mZ2, Type Il tank
®) ® n-C7H16 pool fire (France), HRR=1.563 MW/m?, Type IV tank
._g 14 B C3HS8 fire (USA), HRR/A=1.632 MW/m?2, Type IV tank
© 12 - * 4 n-C7H16 pool fire (France), HRR/A=4.271 MW/mZ, Type IV tank
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Blanket burner: HRR/A defines FRR

HRR/A=0.228 MW/m?2 HRR/A=1 MW/m?2
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Difference in FRR 1s 44%:
For HRR/A=0.228 MW/m? the FRR=11 min 30 s.
For HRR/A=1 MW/m?2 the FRR=8 min.



Blanket burner: wind effect (1.8 m/s)

HRR/A=0.228 MW/m? HRR/A=1 MW/m?
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Blanket burner: wind effect (1.8 m/s)
GTR#13 non-compliant

HRR/A=0.228 MW/m? HRR/A=1 MW/m?
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In wind conditions (<1.8> m/s, Buxton, UK) GTR#13 minimum
temperature requirements are not satisfied: temperatures
under the tank are close to ambient 20°C!



Intermediate remarks
Blanket burner

= Heat flux to a tank in fire with blanket burner increases by
about 50% (from q''=65 kW/m? to g"'=100 kwW/m?) for the
increase of HRR/A from 0.228 MW/m? to 1 MW/m?2. This
resulted in FRR decrease by 44% from 11.5 min to 8 min
(GTR#13 temperature requirements are reproduced in
both cases!).

= For no wing conditions, the fire test reproducibility can be
provided for HRR/A>1 MW/m? (as per “saturation graph”).

= Blanket burner of investigated size 500x1200 mm
performance in a wind of order 1.8 m/s is a concern. Only
“no wind” facilities could use it to satisfy GTR#13
temperature requirements.

= A new “wind-resistant” blanket burner is needed
(increased size?).



Pipe burner (1/2)
Two HRR/A cases (same as JARI burner)

= Case 1: Propane (C3H8) flow rate V=362.4 NL/min,
m=11.07 g/s. Pipe burner area 2.25 m?, HRR=0.513 MW.
Thus HRR/A=0.228 MW/m?.

= Case 2: Propane (C3H8) flow rate V=1589 NL/min,
m=48.54 g/s, HRR=2.25 MW. Thus HRR/A=1 MW/m?.

= With and without wind (1.8 m/s) study.




Pipe burner (2/2)

Numerical detalls

150 mm

5600 holes spaced uniformly at 20 mm. Hole D=1 mm.

Propane velocity: 1.2 m/s (HRR/A=0.228 MW/m?) and

5.3 m/s (HRR/A=1 MW/m?). Note: 3 mm/s in blanket burner.

Burner positioned at 0.15 m above the ground.

Calculation domain: 6x6x4 m.

Conjugate heat transfer from fire to Type 3 tank (0.9x0.3 m).
o<

20 mm Holes (D=1 mm)
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Pipe burner: no wind

Casel: HRR/A=0.228 MW/m? Case 2: HRR/A=1 MW/m?2
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Temperatu
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Pipe burner: no wind

Casel: HRR/A=0.228 MW/m?2
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Pipe burner: wind effect (1.8 m/s)
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Case 2: HRR/A=1 MW/m?2
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GTR#13 T are not always satisfied for HRR/A=0.228 MW/m2 (initial test stage).



Pipe burner: wind effect (1.8 m/s)

Casel: HRR/A=0.228 MW/m? Case 2: HRR/A=1 MW/m?
L |
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Intermediate remarks (engulfing test)
Pipe burner

= With no wind, the engulfing fire test with the pipe burner
satisfles GTR#13 minimum temperatures at
HRR/A=0.228 MW/m? and 1 MW/m? (similar to blanket
burner).

* |n wind conditions, the pipe burner reproduces GTR#13
minimum temperatures with HRR/A=1 MW/m? and not
always reproduces temperatures with HRR/A=0.228
MW/mZ.

= Pipe burner is more “wind resistant” compared to blanket
burner (flow velocities 1200 mm/s and 3 mm/s
respectively!).

= The improve fire test reproducibility the use of pipe
burner with HRR/A>1 MW/m? can be recommended (in
addition to the temperature requirements).



Concluding remarks
Engulfing test

Engulfing fire test must include determination of a tank
FRR (time to rupture of tank without TPRD in a fire) as
required by first responders in EU HyResponse project.

Investigated pipe burner performs more “wind resistant”
compared to investigated blanket burner.

“Wind resistant” burner should be designed and used for
different wind conditions (only 1.8 m/s is investigated
here) to satisfy GTR#13 minimum temperature
requirements for engulfing fire test.

New requirement should be introduced to the
temperature control in GTR#13 fire test protocol:
HRR/A>1 MW/m2 should be provided by burner.
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Part 2. Localised in-situ fire



GTR#13 temperature requirements
6.2.5.1. Fire test (localised + engulfing)

Localised portion of the fire test:

“...the temperature of the thermocouples in the localized
fire area has increased continuously to at least 300 °C
within 1 minute of ignition, to at least 600 °C within 3
minutes of ignition, and a temperature of at least 600 °C
IS maintained for the next 7 minutes ...”
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Reference 1: fuel spill during car fire
Increase of HRR by (4.8 MW -2 MW)=2.8 MW
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- / ,\ \ 4.8 MW

(kW)

\\/

Heat re

J(

b
A e

| I—

I I I I I I I
0 10 20 30 40 50 60 70

“The 4.8 MW peak is associated with a spillage of fuel”.

Source: Fire spread in car parks, BD2552, BRE, Department for Communities and Local Government, 2010.



Reference 2: fuel spill in a car
HRR about 1.7 MW from the gasoline fire start

4 ) L) 1 ] I I ) ] 1 1 I
Experiment D T

3 -

HRR [MW]

o) 10 20 30 40 50 60 70 80 9O
time [min]
The HRR was more than 1.7MW immediately
after ignition of gasoline spill inside a car for 2.5m
about 2-3 min then combustion inside the car
was suppressed quickly due to the lack of oxygen ! —
(it would give 3.4 MW/m? for 0.5 m? spill).

Source: K. Okamoto et al., Burning behaviour of sedan passenger cars, Fire Safety Journal, 44, 2009.

Ignition

: (Experiment D)




Four localised fires under a vehicle
Range: A=0.2-1.9 m?, HRR/A=0.2-2.3 MW/m?

= Case 1: surrogate fuel, C3H8 equivalent m=8.2 g/s.
Burner A=1.9 m?, HRR=0.38 MW: HRR/A=0.2 MW/m?.

= Case 2: surrogate fuel, C3H8 m=41 g/s.
Burner A=1.9 m?, HRR=1.9 MW: HRR/A=1 MW/m?.

= Case 3: diesel m=4.72 g/s®™), C3H8 m=4.31 g/s.
Burner A=0.2 m?4, HRR=0.2 MW: HRR/A=1 MW/m>.

= Case 4: diesel m=103 g/s®™), C3H8 m=94.5 g/s.
Burner A=1.9 m?, HRR= 4.38 MW: HRR/A=2.3 MW/m?.

Ulster

- ) Obtained using D. Drysdale, An introduction
University {0 fire dynamics, 3rd ed., 2011.



Four localised fires under a car
Car and tank geometry, TCs and fire

5.2m 1 L 1.82 m

P [«

ocation

1.47 m

A4

Localised fire area

Fire source (No.1, No.2) covers
localised area of tank 0.25 m

250 mm
—p
25 mm ]
TC1 TC2 TC3 TC4 TC5 TC6

Conjugate heat transfer from fire to
700 bar Type 4 tank (LxD=0.91x0.325 m).



Localised fire: diesel fire with A=0.2 m?
Case 3

= Fire area A=0.2 m? (fire source of area No.1),
diesel m=4.72 gl/s.

= Total HRR=0.2 MW:
= Hence, HRR/A=1 MW/m?2.

Fire source

™

Ulster
University Source: D. Drysdale, An introduction

to fire dynamics, 3rd ed., 2011.



Localised fire: diesel fire with A=1.9 m?
Case 4

For pool fire of about 1-2 m (localised fire) the fuel burning rate
can be taken as quasi-steady value (literature sources).

Source: D. Drysdale, An introduction
to fire dynamics, 3rd ed., 2011.
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Burning rate of diesel for such fire sizes is V=3.9 mm/min.
This is equivalent to m,=54.08 g/m?/s.

Fire area A=1.9 m? (fire source of area No.2), m=103 g/s.
Total HRR=4.38 MW,

Thus HRR/A=2.3 MW/m? (this is
close to References 1-2 above).

Fire source



In-situ fire dynamics: cases 1 and 2

Case 1: HRR/A=0.2 MW/m? Case 2: HRR/A=1 MW/m?2

leﬁs.grsity |:| 600°C (GTR#13 min required)

[ ] 1030°C




In-situ fire dynamics: cases 3 and 4

Case 3: HRR/A=1 MW/m?2 Case 4: HRR/A=2.3 MW/m?

600°C (GTR#13 min required) 1030°C




Four localised fires under a car
Questions to answer

= Would the range of localised fires with different
specific heat release rate, HRR/A, from 0.2 MW/m? to
2.3 MW/m? provide agreements with GTR#13
temperature requirements?

= How different will be heat flux to a tank from a fire for
different HRR/A?

» |[f GTR#13 fire test temperature requirements are
fulfilled, but the heat flux to the tank is different —
would this affect the fire resistance rating (FRR) of a
tank (time to rupture of a tank without or failed to be
Initiated TPRD, e.g. being blocked during accident)?



In-situ fire; HRR/A=0.2 MW/m?
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GTR#13 minimum T requirements are not satisfied for in-situ test (!)



In-situ fire;: HRR/A=1 MW/m?
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GTR#13 min T requirements are not always satisfied (A=1.9 m?).



In-situ fire;: HRR/A=1 MW/m?

Temperature, °C
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In-situ fire; HRR/A=2.3 MW/m?
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Heat flux to tank in four in-situ fires
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Heat flux for Case 1 with HRR/A=0.2 MW/m? is noticeably less.



Localised fire under a car: FRR (1/2)

Casel: HRR/A=0.2 MW/m? Case2: HRR/A=1 MW/m?
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Localised fire under a car: FRR (2/2)

Case 3: HRR/A=1 MW/m? Case 4: HRR/A=2.3 MW/m?2
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Fire resistance rating, min

FRR dependence on HRR/A
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C3H8, localised fire, case 1, CFD, HRR/A=0.2 MW/m?, Type IV tank
C3H8, localised fire, case 2, CEFD, HRR/A=1 MW/m?, Type IV tank
C3H8, localised fire, case 3, CFD, HRR/A=1 MW/m?, Type IV tank
C3H8, localised fire, case 4, CFD, HRR/A=2.3 MW/m?, Type |V tank
CH4-air fire (Germany), HRR/A=0.291 MW/m?, Type |V tank
CH4-air fire (Germany), HRR/A=0.618 MW/m?, Type IV tank
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Three in-situ fire questions answered

= Would the range of localised fires with different specific
heat release rate, HRR/A, from 0.2 MW/m? to 2.3
MW/m? provide agreement with GTR#13 temperature
requirements? Answer: No!

= How different will be heat flux to a tank from a fire for
different HRR/A? Answer: ¢''=50 kW/m?2 (HRR/A=0.2
MW/m?2); q"'=90 kW/m2 (HRR/A>1 MW/m?2)

» |[f GTR#13 fire test temperature requirements are
fulfilled, but the heat flux to the tank is different —
would this affect the fire resistance rating (FRR) of a
tank (time to rupture of a tank without or failed to be
Initiated TPRD, e.g. being blocked during accident)?
Answer: Yes! For HRR/A=0.2 MW/m?, FRR=19 min.
For HRR/A=1.0-2.3 MW/m?, FRR=5.3-6.0 min




Concluding remarks
Localised test

= Carried out research demonstrated that in-situ localised fire test
IS more appropriate for assessment of TPRD performance.

» GTR#13 localised fire test minimum temperature requirements
cannot be realised for in-situ fire test with HRR/A<1 MW/m?,

» GTR#13 localised fire test minimum temperature requirements
must be added by a requirement of HRR/A>1 MW/m? in a burner.

= Similar to engulfing fire, the increase of HRR/A in localised fire
resulted in the increase of heat flux to a tank and the decrease of
FRR (with clear “saturation” of FRR at HRR/A>1 MW/m?).

* FRRin localised fire (time to rupture on tank without TPRD in a
fire) obey the same “saturation curve” as FRR in engulfing fire.

* FRR should be included into GTR#13 fire test protocols to inform
responders to develop intervention strategies and tactics.






