DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

H₂ Composite Pressure Vessel

GTR 13 meeting

stephane.villalonga@cea.fr

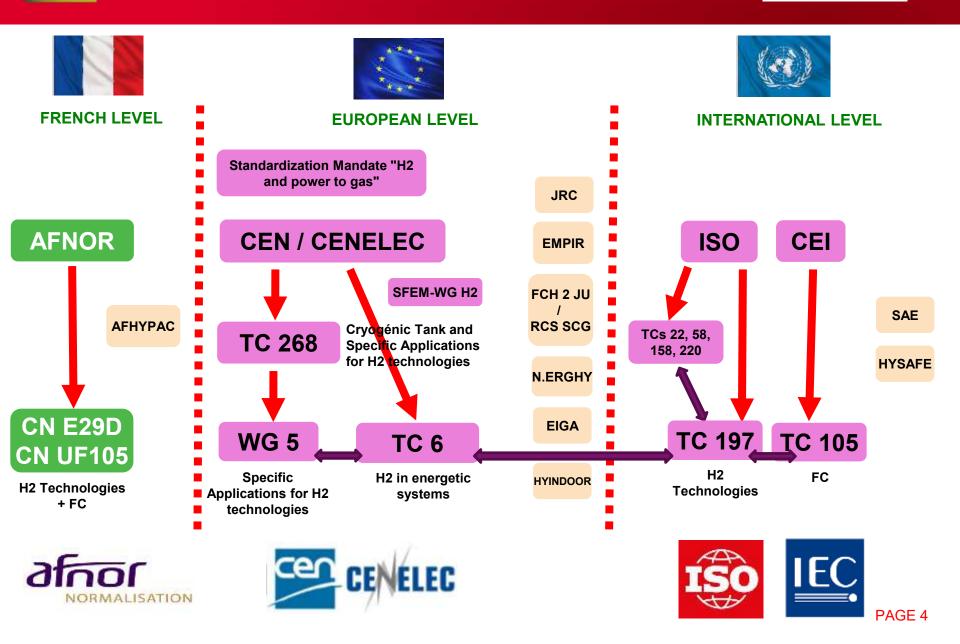
5-7/03/2019, PowerTech Labs, Surrey, Canada

French Hydrogen Plan

H₂ Composite Pressure Vessel at CEA

Burst ratio / HYCOMP project

French Hydrogen Plan


H₂ Composite Pressure Vessel at CEA

Burst ratio / HYCOMP project

DETTRICTED STORAGE

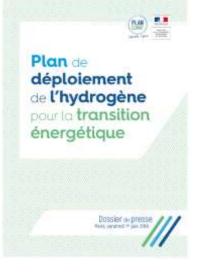
French H₂ Tech. Standard Organization

1st June 2018: French Hydrogen Deployment Plan

Nicola Hulot

French Minister of Ecological and Solidarity Transition "...It is in this spirit that I present a plan for hydrogen that will aim to make our country a world leader in this technology.

To do this, I proposed to set a 10% share of hydrogen produced from renewable sources by 2023.


Moreover, because we need innovations, demonstrators and economic champions of storage Electrolysis, I decided to mobilize 100 million euros to support the first deployments of these technologies of production and transport in the territories."

French Hydrogen Plan

H₂ Composite Pressure Vessel at CEA

Burst ratio / HYCOMP project

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation.

9 research centres 16 010 technicians, engineers, researchers and staff **51** joint research units (UMR) 55 framework agreements with universities and

schools

 priority patents filed in 2016 Equipex (facilities of excellence) Labex (Laboratories of excellence) Idex (Initiatives of excellence) start-ups since 1972 in the innovative technologies sector

4,1 billion euros budget

422 ongoing European projects in 2016

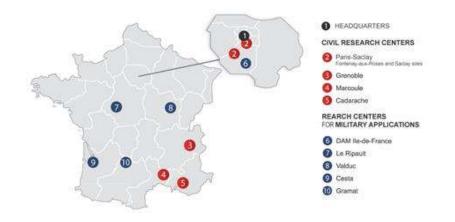
Cadarache

REARCH CENTERS FOR MILITARY APPLICATIONS

Gramat

DE LA RECEDENT À L'HOURT

CEA is active in 4 main areas



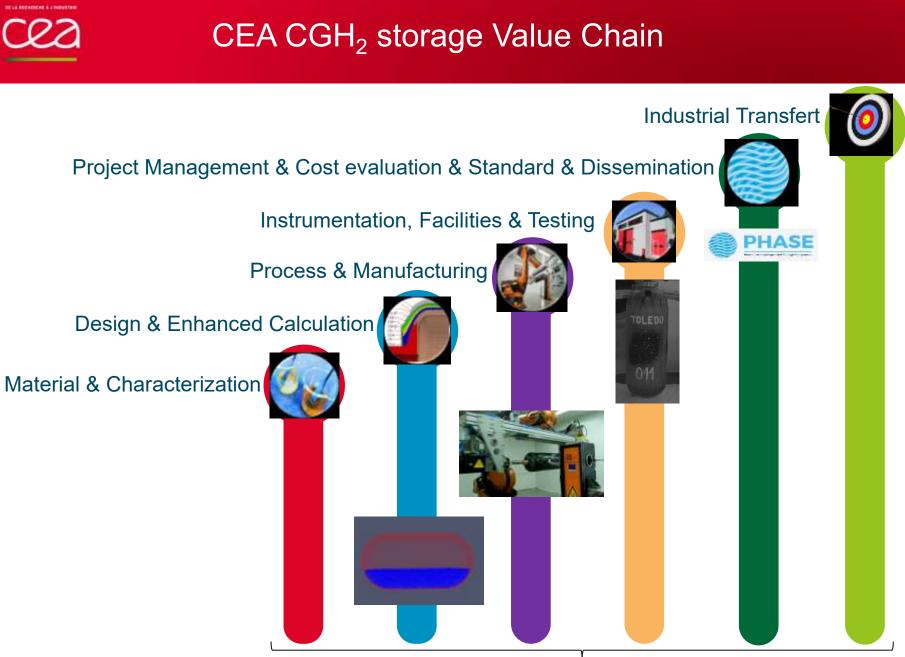
- 1) Defence and security
- 2) Low carbon energies (nuclear and renewable energies)
- 3) Technological research for industry
- 4) Fundamental research in the physical sciences and life sciences

CEA, From research to industry

DE LA RECHERCHE À L'INDUSTRIE

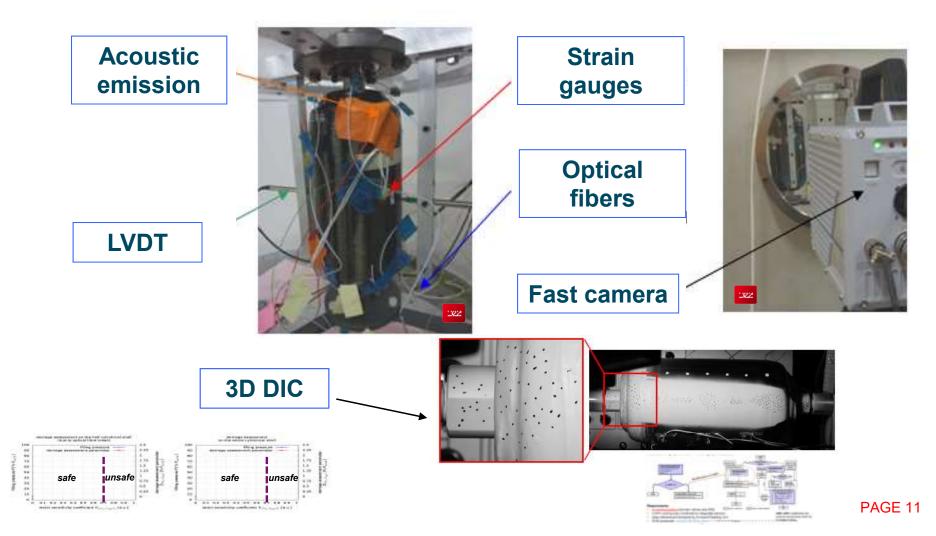
CEA is "The World's Most Innovative Research Institution" (ranked n°1 by Reuters, 8th of March, 2016)

DELS RECEICHE & L'HRUSTE



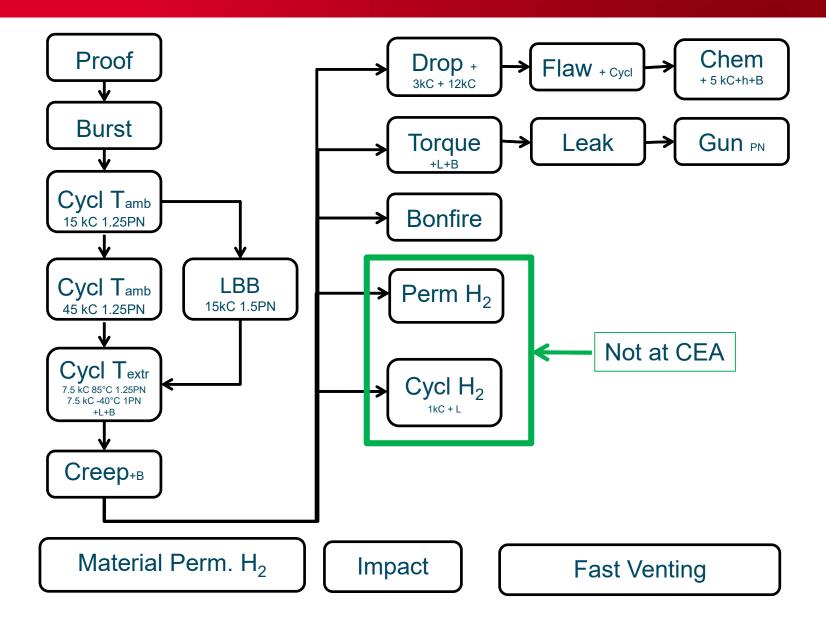
CEA CPV plateform = Lavoisier plateform

 CEA Le Ripault: Lavoisier Facility (Tours): dedicated to H₂ application (storage, EMA, Bipolar plates) and batteries (1000 m² lab + Cycling Facility + TER experimental testing center + CEA CESTA Bordeau



CGH₂ Expertise

CEA Instrumentation & SHM


Multi-instrumented test (pressure, temperature, optical fibers, strain gauges, acoustic emission, LVDT, fast camera, 3D digital image correlation)

DE LA RECEDENT À L'INDUSTRI

cea

CEA Testing: EC79 + other tests (R134...)

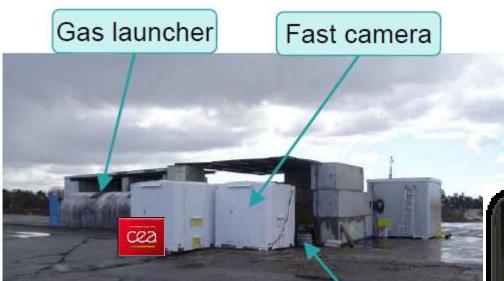
CEA Testing Facilities

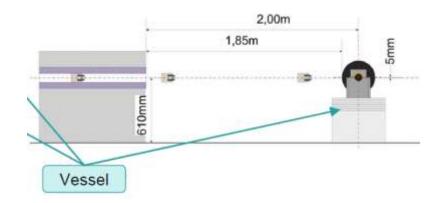
• Performances & safety assesment

Compliance to standard testing (EC79, R134)

•

CEA Testing Facilities: Drop tower

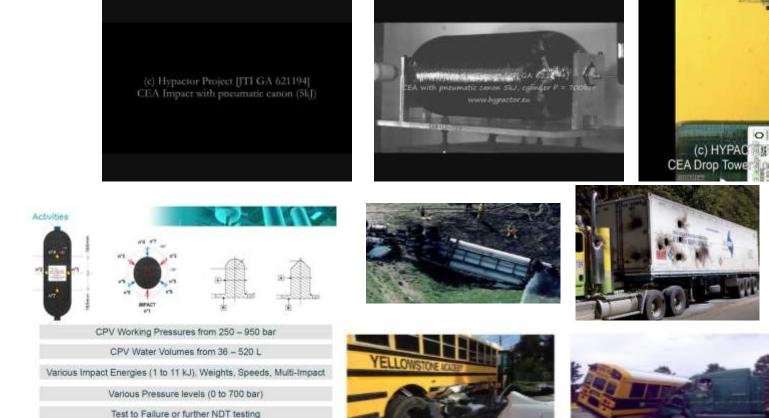

Sandbags for impactor protection

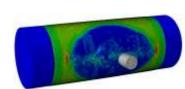

PAGE 14

CEA Testing Facilities: Gas launcher

• Performances & safety assesment

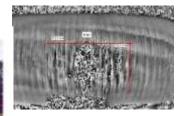
CEA Impact Test Facilities: Hypactor project


- Performances & safety assessment
- with Hexagon and Air Liquide


Short-term (Burst) and Long-term (hydraulic cycling, hold) evaluations

HYPACTER

- Resistance to abusive testing (e.g. impact, pressure overload/creep...)
- Provide recommendations for Regulation Codes + Standards (RCS)


HYPACTOR

Spheric / P=0bar

U GA 621194

PAGE 16

DELS RECEIVE & L'HRUSTE

CEA CPV Cycling Facility

Main characteristics:

- at Ambient Temperature
- for vessels with damage (flaws, impacts, chemical exposure...)
- at **Extreme Temperatures** (-40°C, +85°C) extended to (-60°C to +100°C)
- for Leak before burst
- for Accelerated stress rupture test : Pressure Constant Load at given extreme temperature and hygrometry
- Cycles from 5 bar to 1100 bar
- Max Volume Expansion at 1050 bar : 46L
- Frequence: 5 cycle/min for 300L
- Maximal Vessel Volume : 300L
- Hygrometry: 0<RHH<100%
- 2 cells compatible with 300L/1100 bar

PLAN

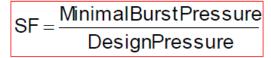
French Hydrogen Plan

H₂ Composite Pressure Vessel at CEA

Burst ratio / HYCOMP project

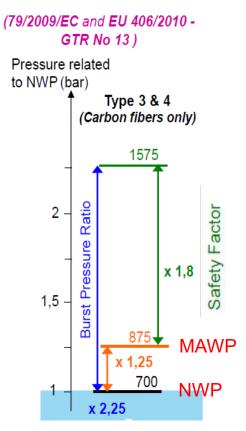
HYCOMP project: Safety Factor definition

Analysis of existing design requirements


HYCOMP : European FCH-JU project

"Enhanced Design Requirements and Testing Procedures for Composite Cylinders intended for the Safe Storage of Hydrogen"

HyCOMP is a Pre-Normative Research January 2011 to March 2014 (39 months) Budget: 3 802 542 €


www.hycomp.eu https://fch.europa.eu/

public information available

<text><text><text><text><text><text><text><text><text><text><text><text><text>

ON-BOARD APPL.

DE LA RECRETERE À L'HOURT

Carbon Epoxy Composite Damage Process

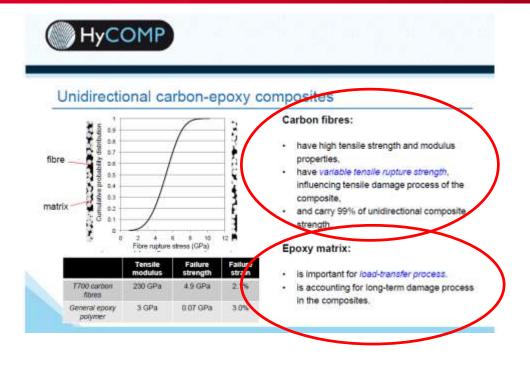
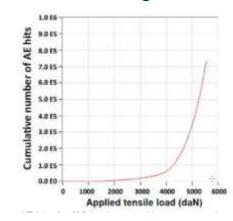
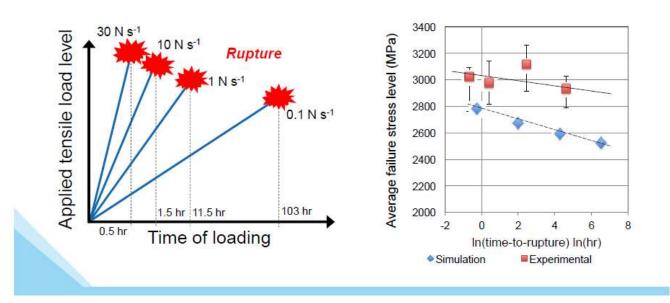



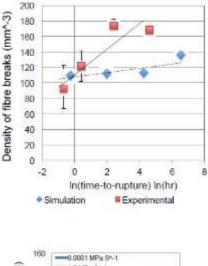
Figure shows that a rapid increase in volumetric density of fibre breaks was found as the applied tensile stress increased beyond 80% of its tensile failure strength.

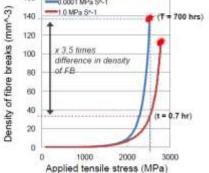
The failure of UD composites are dependent on clustering process of fibre breaks.

Two different fiber/matrix systems studied:

		Plate specimens CAQ's & Faber's cylinders (Reference system)	Hexagon's cylinders (Specific system)	
Carbon fiber		T700 (E = 230 GPa, ε = 2,1%, UTS = 4,9 GPa)		
Epoxy resin	Commercial reference	Huntsman resin	Hexagon proprietary	
	Glass transition temperature T _o	Measured around 115°C	110°C	

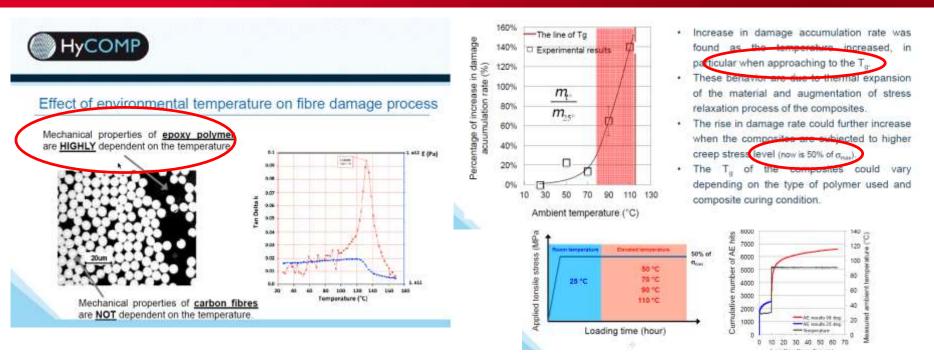





Effect of applied loading rate on fibre damage process

Effect of the applied loading rate on fibre damage process

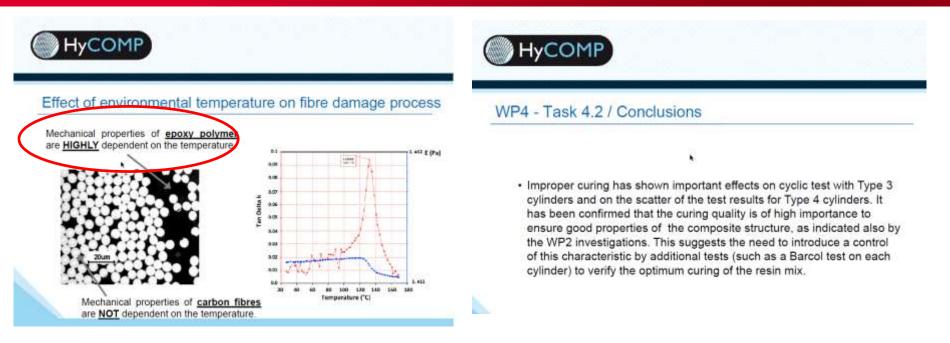
Methodology for Intrinsic Safety Factor analysis: iSF



	Numerical		Experimental-Analytical	
	15 years	150 years	15 years	150 years
P =10 ⁻⁶	1.28	1.32	1.39	1.40
P =10 ⁻⁹	1.29	1.34	1.60	1.61

- A quasi-asymptotic behavior of *iSF* value with respect to the lifetime was observed.
- Based on specimen results ONLY, A "science based" minimum SF has been defined (hypothesis = Under a constant load and 10⁻⁶ probability of failure or 10⁻⁹) a minimum iSF value of 1.4 or 1,6 must be applied to guarantee specimen lifetime ≥ 15 years under a constant load, with a probability of failure (10⁻⁶ or 10⁻⁹)

```
на на насновена ѝ стнаната
```


Effect of environnemental temperature on fibre damage process

- The long-term damage processes of composites, which are time-dependent, are governed by the viscoelasticity properties of epoxy polymer.
- The effect of the temperature on damage process of the composites is relatively small when the increase in ambient temperature is 30° C below the T_a.
- The efficiency of load transfer mechanism at the interface of fibre and matrix declined and the effect of the existing fibre breakage on the neighbouring fibres was enlarged.

```
DELS RECEDENT & L'HOUTTH
```

Effect of environnemental temperature on fibre damage process

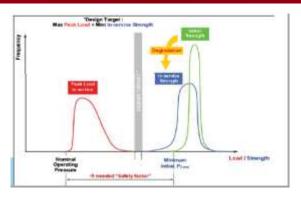
- It was calculated that the lifetime for the composites subjected to creep test at 70% of the average failure stress decreased from 2E27 years to 0.2 year when the ambient temperature changed from the room temperature to 90 °C.
- Since the rise in the temperature level could influence the lifetime of the composites, the temperature effect must be taken into account in the safety factor analysis, which can be determined in the future analysis.

WP conclusions

- Synthesis of recommendations:
 - 1. Reduce the Design Pressure to the Maximum Developed Pressure at the maximum temperature
 - 2. Reduce Safety Factor to a fixed value in between 1,4 and 2 (to be decided), e.g. 1,8
 - 3. Add specifications on T_a
 - 4. Make statistical assessment
 - 5. Perform tests at the new Design Pressure
 - 6. Tests at elevated temperature should be performed at 5°C above T_{max} defined for the application
 - 7. Add test to verify the good curing of the resin (e.g. Barcol test)
 - Control each manufactured cylinders to detect any deviation from a reference batch, for example by using Acoustic Emission
 - Continue to develop Non-Destructive Techniques to carry out periodic inspection of composites pressure vessels.

Decreasing Burst Ratio!

• Burst ratio


Decreasing burst ratio from 2,25 to 2

- \Rightarrow Decreasing Hycomp safety factor from 1,8 to 1,6
- \Rightarrow no margin with the Intrinsic Safety Factor (1,6)
- \Rightarrow no taking into account temperature and humidity effects

nominal pressure	filling pressure	burst ratio	burst pressure	Hycomp safety Factor
700	875	2,25	1575	1,8
700	875	2	1400	1,6

• Specification on Composite Tg

Example of ISO 19881 where a new specification on Tg has been added (chapter 6.6: Tg > Tmax+20°C=105°C; Tmax=85°C)

DE LA RECHERCHE À L'INDUSTRIE

Thank you for your attention

www.cea.fr