

Submitted by the Republic of Korea



**Informal Document - ACSF-22-09** 

# Minimum Safety Distance to the front

# ACSF IWG 22<sup>nd</sup> session on April 2019, Brussels

MYUNG SU LEE
Korea Automobile Testing & Research Institute



### Time Gap proposed in last session

#### Minimum Safety Distance in front

$$S = V_{ALKS} \times t_{front}$$

Where :

 $V_{LKLC}$ : the actual speed of the ALKS vehicle in [m/s];



 $t_{front}$ : time gap between the LKLC vehicle and the leading vehicle in front in [second] =  $0.8 + \frac{1.6v_{LKLC}}{36.1}$ 

#### Comment from 20<sup>th</sup> session

- Concern for too high deceleration  $(9m/s^2)$
- Taking Korean proposal(ACSF-20-08) with appropriate deceleration rate into account





### New Approach for appropriate deceleration

- Using deceleration data from the state of the art vehicle (MY 2016 to 2018)
- UN Reg. R13-H ABS Test(Additional Check)
- 32 vehicle model, GVWR, 40km/h and 120km/h, 0.8µ / 0.3µ







#### **Appropriate Deceleration**

- Deceleration  $(a_{x,max})$  formulas by road condition(wet asphalt, wet basalt)
  - Avg. MFDD deceleration ( $a_{x,max}$ ) at 40km/h and 120km/h (0.8 $\mu$ )= 8.77 $m/s^2$  and 7.21 $m/s^2$

$$a_{x0.8\mu}(v_x) = -0.0702 \times v_x + 9.55$$

Avg. MFDD deceleration ( $a_{x,max}$ ) at 40km/h and 120km/h (0.3 $\mu$ )= 2.42 $m/s^2$  and 2.38 $m/s^2$ 

$$a_{x0.3\mu}(v_x) = -0.0018 \times v_x + 2.44$$

Linear Decelerations by velocity







### **Braking Distance**

#### • Braking distance $(d_{brake})$

$$d_{brake} = (t_{sys} + \frac{v_x}{2a_x(v_x)}) \times v_x$$

- > System delay  $(t_{sys}) = 0.3 \text{sec}$
- $b d_{brake(0.8\mu)} = (t_{sys} + \frac{v_x}{2a_x(v_x)}) \times v_x \leftarrow a_{x0.8\mu} (v_x) = -0.0702 \times v_x + 9.55$
- $b \quad d_{brake(0.3\,\mu)} = (t_{sys} + \frac{v_x}{2a_x(v_x)}) \times v_x \leftarrow a_{x0.3\,\mu} (v_x) = -0.0018 \times v_x + 2.44$

> Braking distance by deceleration & velocity







# Time gap's selection by road condition

- Time gap increased by vehicle speed (0, 130km/h) and road condition (μ 0.8, 0.3)
  - time gap 0.2 at 0 km/h and 3.1 at 130km/h for μ 0.8
- time gap 1.0 at 0 km/h and 8.2 at 130km/h for μ 0.3







### **Minimum Clearance**

#### Consideration of minimum clearance

- Prevention of collision at 0km/h (repeated traffic jam situation, bumper to bumper)
- Minimum clearance extracted from ACSF-19-06: 2m
  - Steady-state following data collected from 125 driver test data and the linear regression(ACSF-19-06)



$$Y = 1.36x + 1.98$$





#### Table of the braking distance and proposed Minimum Safety Distance in front

| VALKS<br>(km/h) | a<br>(0.8mu) | a<br>(0.3mu) | d brake<br>(0.8mu) | Proposed MSD (0.8mu) | d brake<br>(0.3mu) | Proposed MSD<br>(0.3mu) |
|-----------------|--------------|--------------|--------------------|----------------------|--------------------|-------------------------|
| 0               | 9.55         | 2.44         | 0                  | 2.0                  | 0                  | 2.0                     |
| 10              | 9.36         | 2.44         | 1.2                | 3.2                  | 2.4                | 6.3                     |
| 20              | 9.16         | 2.43         | 3.4                | 5.6                  | 8.0                | 13.7                    |
| 30              | 8.97         | 2.43         | 6.4                | 9.2                  | 16.8               | 24.2                    |
| 40              | 8.77         | 2.42         | 10.4               | 14.1                 | 28.8               | 37.7                    |
| 50              | 8.58         | 2.42         | 15.4               | 20.3                 | 44.1               | 54.4                    |
| 60              | 8.38         | 2.41         | 21.6               | 27.6                 | 62.6               | 74.1                    |
| 70              | 8.19         | 2.41         | 28.9               | 36.3                 | 84.4               | 96.8                    |
| 80              | 7.99         | 2.40         | 37.6               | 46.1                 | 109.5              | 122.7                   |
| 90              | 7.80         | 2.40         | 47.6               | 57.2                 | 138.0              | 151.6                   |
| 100             | 7.60         | 2.39         | 59.1               | 69.5                 | 169.8              | 183.6                   |
| 110             | 7.41         | 2.39         | 72.2               | 83.1                 | 204.9              | 218.7                   |
| 120             | 7.21         | 2.38         | 87.1               | 97.9                 | 243.4              | 256.9                   |
| 130             | 7.02         | 2.38         | 103.8              | 113.9                | 285.4              | 298.1                   |





### **Renew Proposal**

proposal

$$S = V_{ALKS} \times t_{front} + d_s$$

Where:

 $V_{ALKS}$ : the actual speed of the ALKS vehicle in m/s;

 $t_{front}$ : time gap between the ALKS vehicle and the leading vehicle in front

in second

= 
$$0.2 + \frac{2.9*V_{ALKS}}{36.1}$$
 for dry and wet condition

$$[=1.0+\frac{7.2*V_{ALKS}}{36.1}$$
 for snowy condition]

ds: minimum clearance of 2 m