Minimum Safety Distance to the front

ACSF IWG 22 ${ }^{\text {nd }}$ session on April 2019, Brussels

MYUNG SU LEE
Korea Automobile Testing \& Research Institute

Time Gap proposed in last session

- Minimum Safety Distance in front

$$
S=V_{A L K S} \times t_{\text {front }}
$$

Where :

$V_{L K L C}$: the actual speed of the ALKS vehicle in $[\mathrm{m} / \mathrm{s}]$;
$t_{\text {front }}:$ time gap between the LKLC vehicle and the leading vehicle in front in [second] $=0.8+\frac{1.6 v_{\text {LKLC }}}{36.1}$

- Comment from $\mathbf{2 0}^{\text {th }}$ session
- Concern for too high deceleration $\left(9 m / s^{2}\right.$)
- Taking Korean proposal(ACSF-20-08) with appropriate deceleration rate into account

Outline(Flow)

- New Approach for appropriate deceleration
- To solve the concern of too high deceleration
- Is that really too high? We got the data from the braking test(UN R-13H)
- Braking Distance based on appropriate deceleration
- Time gap selection for Minimum Safety Distance
- Formula for Minimum Safety Distance
- Result of Formula

Infrastructure and Transport

New Approach for appropriate deceleration(1)

- Using deceleration data from the state of the art vehicle (MY 2016 to 2018)
> UN Reg. R13-H ABS Test(Additional Check)
> 32 vehicle model, GVWR, $40 \mathrm{~km} / \mathrm{h}$ and $120 \mathrm{~km} / \mathrm{h}, 0.8 \mu / 0.3 \mu$

New Approach for appropriate deceleration(2)

- Deceleration $\left(a_{x, \max }\right)$ formulas by road condition(wet asphalt, wet basalt)
$>$ Avg. MFDD deceleration $\left(a_{x, \max }\right)$ at $40 \mathrm{~km} / \mathrm{h}$ and $120 \mathrm{~km} / \mathrm{h}(0.8 \mu)=8.77 \mathrm{~m} / \mathrm{s}^{2}$ and $7.21 \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{x 0.8 \mu}\left(v_{x}\right)=-0.0702 \times v_{x}+9.55
$$

\rightarrow Avg. MFDD deceleration $\left(a_{x, \max }\right)$ at $40 \mathrm{~km} / \mathrm{h}$ and $120 \mathrm{~km} / \mathrm{h}(0.3 \mu)=2.42 \mathrm{~m} / \mathrm{s}^{2}$ and $2.38 \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{x 0.3 \mu}\left(v_{x}\right)=-0.0018 \times v_{x}+2.44
$$

Braking Distance based on appropriate decel.

- Braking distance ($d_{\text {brake }}$)
$>$ System delay $\left(t_{\text {sys }}\right)=0.3 \mathrm{sec}$
> Braking distance by deceleration \& velocity

$$
\begin{aligned}
& d_{\text {brake }(0.8 \mu)}=\left(t_{\text {sys }}+v_{x} / 2 a_{x}\left(v_{x}\right) \times v_{x} \leftarrow a_{x 0.8 \mu}\left(v_{x}\right)=-0.0702 \times v_{x}+9.55\right. \\
& d_{\text {brake }(0.3 \mu)}=\left(t_{\text {sys }}+v_{x} / 2 a_{x}\left(v_{x}\right) \times v_{x} \leftarrow a_{x 0.3 \mu}\left(v_{x}\right)=-0.0018 \times v_{x}+2.44\right.
\end{aligned}
$$

Infrastructure and Transport

Time gap selection for Minimum Safety Distance

- Principle of time gap selection
- Minimum safety distance should be greater than braking distance
- As the vehicle speed increase, safety margin should be larger.
(e.g. safety margin at 20 kph < safety margin at 30 kph)
- Selected time gap
- time gap 0.2 at $0 \mathrm{~km} / \mathrm{h}$ and 3.1 at $130 \mathrm{~km} / \mathrm{h}$ for $\mu 0.8$
- time gap 1.0 at $0 \mathrm{~km} / \mathrm{h}$ and 8.2 at $130 \mathrm{~km} / \mathrm{h}$ for $\mu 0.3$

Formula for Minimum Safety Distance

- proposal

$$
S=V_{A L K S} \times t_{f r o n t}+d_{s}
$$

Where :
$V_{A L K S}$: the actual speed of the ALKS vehicle in m / s;
$t_{\text {front }}$: time gap between the ALKS vehicle and the leading vehicle in front in second

$$
\begin{aligned}
& =0.2+\frac{2.9 * V_{A L K S}}{36.1} \text { for dry and wet condition } \\
& {\left[=1.0+\frac{7.2 * V_{A L K S}}{36.1} \text { for snowy condition }\right]}
\end{aligned}
$$

ds : minimum distance between the ALKS vehicle and the leading vehicle of $2 \mathrm{~m}^{*}$
*Get from ACSF 19-06

Result of Formula

VALKS $(\mathbf{k m} / \mathbf{h})$	\mathbf{a} $(\mathbf{0} .8 \mathrm{mu})$	\mathbf{a} $(\mathbf{0 . 3 m u})$	\mathbf{d} brake $(\mathbf{0 . 8 m u})$	Proposed MSD $(\mathbf{0 . 8 m u})$	\mathbf{d} brake $(\mathbf{0 . 3 m u})$	Proposed MSD $(\mathbf{0 . 3 m u})$
0	-	-	0	2.0	0	2.0
10	9.36	2.44	1.2	3.2	2.4	6.3
20	9.16	2.43	3.4	5.6	8.0	13.7
30	8.97	2.43	6.4	9.2	16.8	24.2
40	8.77	2.42	10.4	14.1	28.8	37.7
50	8.58	2.42	15.4	20.3	44.1	54.4
$\mathbf{6 0}$	8.38	$\mathbf{2 . 4 1}$	$\mathbf{2 1 . 6}$	$\mathbf{2 7 . 6}$	$\mathbf{6 2 . 6}$	$\mathbf{7 4 . 1}$
70	8.19	2.41	28.9	36.3	84.4	96.8
80	7.99	2.40	37.6	46.1	109.5	122.7
90	7.80	2.40	47.6	57.2	138.0	151.6
100	7.60	2.39	59.1	69.5	169.8	183.6
110	7.41	2.39	72.2	83.1	204.9	218.7
120	7.21	2.38	87.1	97.9	243.4	256.9
$\mathbf{1 3 0}$	7.02	$\mathbf{2 . 3 8}$	$\mathbf{1 0 3 . 8}$	$\mathbf{1 1 3 . 9}$	$\mathbf{2 8 5 . 4}$	

Appendix

Minimum Distance

- Consideration of minimum distance
- Prevention of collision at $0 \mathrm{~km} / \mathrm{h}$ (repeated traffic jam situation, bumper to bumper)
- Minimum distance extracted from ACSF-19-06 : 2m
> Steady-state following data collected from 125 driver test data and the linear regression

$$
Y=1.36 x+1.98
$$

