

Submitted by the Republic of Korea

Informal Document - ACSF-22-09r1

Minimum Safety Distance to the front

ACSF IWG 22nd session on April 2019, Brussels

MYUNG SU LEE Korea Automobile Testing & Research Institute

Time Gap proposed in last session

 t_{front} : time gap between the LKLC vehicle and the leading vehicle in front in [second] = $0.8 + \frac{1.6v_{LKLC}}{36.1}$

• Comment from 20th session

- Concern for too high deceleration($9m/s^2$)
- Taking Korean proposal(ACSF-20-08) with appropriate deceleration rate into account

Outline(Flow)

• New Approach for appropriate deceleration

- To solve the concern of too high deceleration
- Is that really too high? We got the data from the braking test(UN R-13H)
- Braking Distance based on appropriate deceleration
- Time gap selection for Minimum Safety Distance
- Formula for Minimum Safety Distance
- Result of Formula

New Approach for appropriate deceleration(1)

- Using deceleration data from the state of the art vehicle (MY 2016 to 2018)
- UN Reg. R13-H ABS Test(Additional Check)
- > 32 vehicle model, GVWR, 40km/h and 120km/h, 0.8 μ / 0.3 μ

New Approach for appropriate deceleration(2)

- Deceleration $(a_{x,max})$ formulas by road condition(wet asphalt, wet basalt)
 - Avg. MFDD deceleration $(a_{x,max})$ at 40km/h and 120km/h (0.8μ) = 8.77 m/s^2 and 7.21 m/s^2

$$a_{x0.8\mu}(v_x) = -0.0702 \times v_x + 9.55$$

Avg. MFDD deceleration $(a_{x,max})$ at 40km/h and 120km/h $(0.3\mu)=2.42m/s^2$ and $2.38m/s^2$

$$a_{x0.3\mu}(v_x) = -0.0018 \times v_x + 2.44$$

Braking Distance based on appropriate decel.

• Braking distance (*d*_{brake})

- System delay $(t_{sys}) = 0.3$ sec
- Braking distance by deceleration & velocity

 $d_{brake(0.8\mu)} = (t_{sys} + \frac{v_x}{2a_x(v_x)}) \times v_x \leftarrow a_{x0.8\mu} (v_x) = -0.0702 \times v_x + 9.55$ $d_{brake(0.3\mu)} = (t_{sys} + \frac{v_x}{2a_x(v_x)}) \times v_x \leftarrow a_{x0.3\mu} (v_x) = -0.0018 \times v_x + 2.44$

Time gap selection for Minimum Safety Distance

• Principle of time gap selection

- Minimum safety distance should be greater than braking distance
- As the vehicle speed increase, safety margin should be larger. (e.g. safety margin at 20kph < safety margin at 30kph)

• Selected time gap

- time gap 0.2 at 0 km/h and 3.1 at 130km/h for μ 0.8
- time gap 1.0 at 0 km/h and 8.2 at 130km/h for μ 0.3

Velocity [km/h]

Formula for Minimum Safety Distance

proposal

$$S = V_{ALKS} \times t_{front} + d_s$$

Where :

 V_{ALKS} : the actual speed of the ALKS vehicle in m/s;

$$\begin{split} t_{front} &: \text{time gap between the ALKS vehicle and the leading vehicle in front} \\ & \text{in second} \\ &= 0.2 + \frac{2.9 * V_{ALKS}}{36.1} \text{ for dry and wet condition} \\ & [= 1.0 + \frac{7.2 * V_{ALKS}}{36.1} \text{ for snowy condition }] \\ & \text{ds} : \text{minimum distance between the ALKS vehicle and the leading vehicle of 2m*} \end{split}$$

*Get from ACSF 19-06

Result of Formula

VALKS (km/h)	a (0.8mu)	a (0.3mu)	d brake (0.8mu)	Proposed MSD (0.8mu)	d brake (0.3mu)	Proposed MSD (0.3mu)
0	-	-	0	2.0	0	2.0
10	9.36	2.44	1.2	3.2	2.4	6.3
20	9.16	2.43	3.4	5.6	8.0	13.7
30	8.97	2.43	6.4	9.2	16.8	24.2
40	8.77	2.42	10.4	14.1	28.8	37.7
50	8.58	2.42	15.4	20.3	44.1	54.4
60	8.38	2.41	21.6	27.6	62.6	74.1
70	8.19	2.41	28.9	36.3	84.4	96.8
80	7.99	2.40	37.6	46.1	109.5	122.7
90	7.80	2.40	47.6	57.2	138.0	151.6
100	7.60	2.39	59.1	69.5	169.8	183.6
110	7.41	2.39	72.2	83.1	204.9	218.7
120	7.21	2.38	87.1	97.9	243.4	256.9
130	7.02	2.38	103.8	113.9	285.4	298.1

Appendix

Minimum Distance

Consideration of minimum distance

- Prevention of collision at 0km/h (repeated traffic jam situation, bumper to bumper)
- Minimum distance extracted from ACSF-19-06 : 2m
 - Steady-state following data collected from 125 driver test data and the linear

