

ASEP IWG #12

2019.07.09-11 ASEP IWG #12 meeting

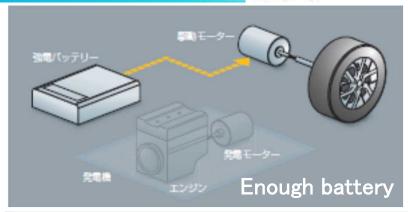
@Berlin

JASIC

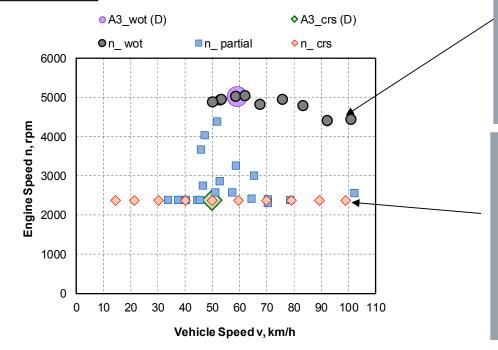
Contents

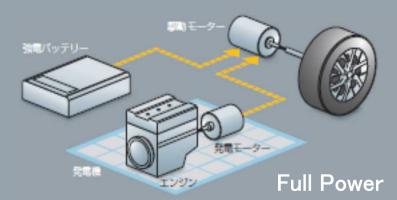
- 1. ASEP Sound Model Apply to Series-HEV
- 2. Summary of test results
- 3. Ideas to solve the issue

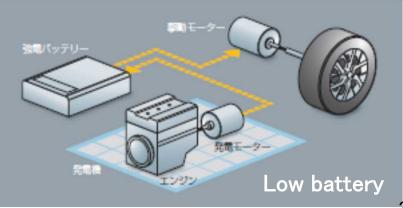
1. ASEP Sound Model - Apply to Series-HEV



Mechanism of Series HEV


Driven by motor


ICE is only as generator.


No relationship between vehicle speed and ICE engine speed.

Series-HEV

Test Vehicle

Test vehicle information

Test vehicle			Vehicle-08 (Series-HEV)		
Spec.	Category		M1		
	Power unit		Motor		
	Max. power		80 kW		
	mro		1285 kg		
	PMR		62.3		
	Engine for power generation		1198 cc		
			Max. power @ 5400 rpm		
	Tyre size		185/70R14		
R51-03 Annex 3		D-range			
Conditions		Gear	V, km/h	n, rpm	a, m/s²
Vehicle running (Wot, Partial, Crs)		D	14-103	2400-5000	0.3-4.0

Overview of Sound Model

A Tyre Rolling Sound Model, L_{TR}

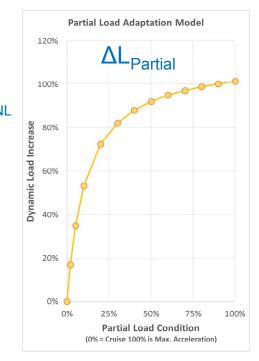
$$L_{TR} = Slope_{TR} * log(v_{test} / 50) + L_{REF,TR}$$

 $L_{REF,TR} = X % of L_{CRS,REP}$

X %(Tyre noise contribution at cruise test in Annex 3 is actually set to by 90%)

B Power Train Base Mechanic Sound Model (No Load), L_{PT,NL}

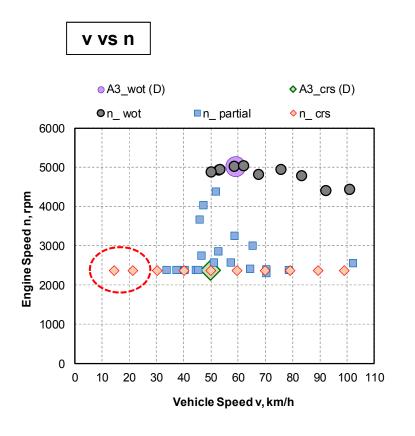
$$L_{PT,NL} = Slope_{PT,NL} * log((n_{test} + n_{shift}) / (n_{CRS,REP} + n_{shift})) + L_{REF,PT,NL}$$

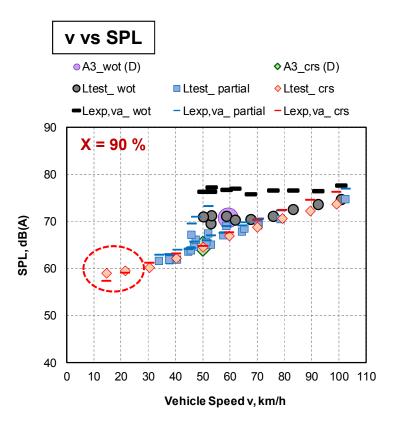

$$L_{REF,PT,NL} = (100 - X \%) of L_{CRS,REP}$$

C Dynamic Model, L_{DYN}

$$\begin{split} L_{DYN} &= Slope_{DYN,NL} * log((n_{test} + n_{shift}) / (n_{WOT,REP} + n_{shift})) + L_{REF,DYN,NL} \\ &+ \Delta L_{DYN} * \Delta L_{Partial} \\ L_{REF,DYN,NL} &= L_{REF,PT,NL} - 15 \\ \Delta L_{DYN} &= [L_{WOT,REP} \odot L_{TR} (V_{WOT,REP}) \odot L_{PT,NL} (n_{WOT,REP})] - L_{REF,DYN,NL} \\ \Delta L_{Partial} &= (See right figure) \end{split}$$

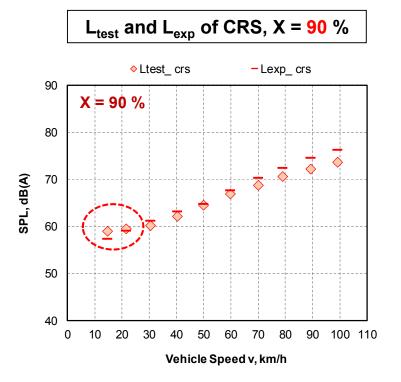
D Expectation level, L_{exp}

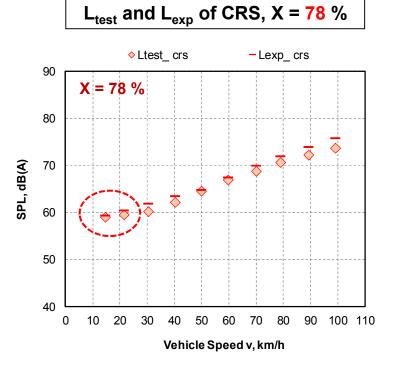

$$\mathsf{L}_{\mathsf{test}} \; \leq \; \; \mathsf{L}_{\mathsf{exp}} = \left(\begin{array}{c} \mathsf{L}_{\mathsf{TR}} \oplus \mathsf{L}_{\mathsf{PT,NL}} \oplus \mathsf{L}_{\mathsf{DYN}} \end{array} \right) + \Delta \mathsf{L}_{\mathsf{MARGIN}}$$



An Issue of current sound model

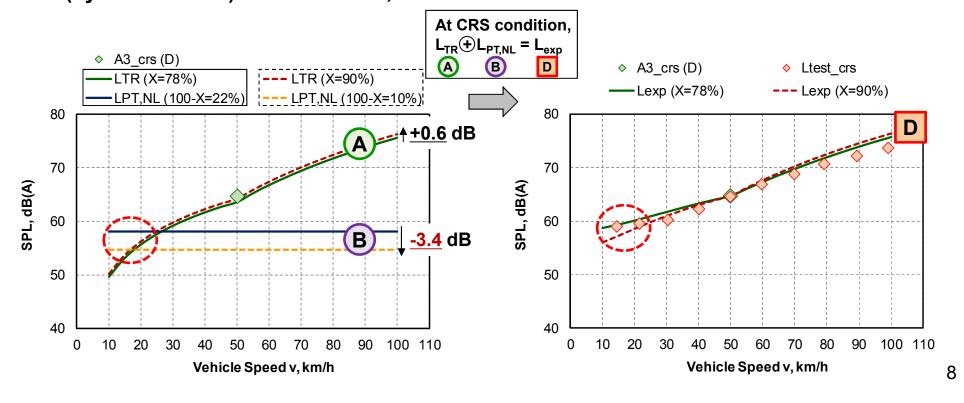
ASEP sound model can work well at most of conditions. Only $L_{\rm test}$ on cruise test at lower vehicle speed exceeds $L_{\rm exp}$ by sound model if using X=90%.




Influence of X(%); tyre noise contribution of Lcrs

If using the fixed value X = 90 %, $L_{test} > L_{exp}$ at low vehicle speed.

If using actual measured value X=78%, sound model can fit.


The Reason of Underestimation with fixed X=90%

If 78% of X change to 90%,

- A Tyre sound level $L_{TR} \rightarrow \pm 0.6$ dB
- B Power train sound level $L_{PT,NL} \rightarrow -3.4$ dB

In case of X=90%, $L_{PT,NL}$ (mechanical sound) is underestimated. Due to higher contribution of $L_{PT,NL}$ at low vehicle speed, L_{exp} is lower than $L_{test.}$ At higher vehicle speed or acceleration conditions, L_{TR} (tyre sound) and L_{DYN} (dynamic sound) are combined, then less influence of X values.

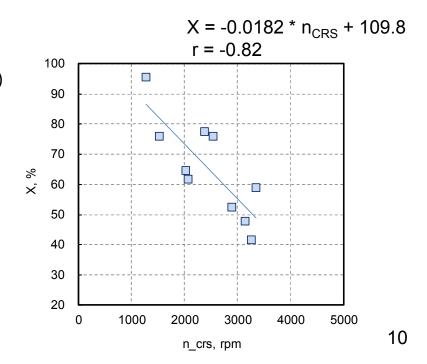
2. Summary of Results

- ➤ The sound model can be applied to series HEV at most of operation conditions except for the condition at low speed and low load.
- ➤ In this condition, since mechanical sound model is dominant, estimated uncertainty is not better than the other conditions which sound model is combined three models.
- Then, X% which links to mechanical sound level is sensitive.
 - → Need consideration only at low speed and low load condition.

3. Ideas to solve the issue

Using proper value of X for each test car instead of fixed value can improve sound model.

Measure coast-by test (tyre sound level) to use measured X%


Con; Need additional measurement

Use formula for relationship between engine speed n_{CRS} and X%.

Function of n_{CRS} (engine speed in Annex3 cruise test at 50km/h)

$$X (\%) = \frac{10^{\frac{L_{TR}}{10}}}{10^{\frac{L_{CRS}}{10}}} \times 100 = (1 - \frac{10^{\frac{L_{pT,NL}}{10}}}{10^{\frac{L_{CRS}}{10}}}) \times 100$$

Thank you for your attention.