PREMISSES FOR AN ALTERNATIVE METHOD

A. No interpolation: worst-case $c_D \cdot A$ is always measured

B. Interpolation: worst-case, best-case $c_D \cdot A$ is always measured, individual vehicle - equipment $\Delta c_D \cdot A$ can be measured (default)

$\Delta c_D \cdot A$ can be calculated (an alternative method, eg. CFD)

Application of an alternative method:
1. Makes the type-approval process significantly more effective; highly variable equipment can be calculated and not measured
2. Has a relatively marginal effect on the whole car; V_L & V_H measured; aero-effect of a single equipment cca. 0-10% of $\Delta CED_{L\rightarrow H}$
1. **Body types**
2. **Groups of types of parts**
3. **Number of test-cases**

Responsibility: OEM

Approval: TS/TAA

1. **Baseline model**
2. **List of modifications (deltas)**

Responsibility: OEM

Approval: TS/TAA

1. **Type and set of parameters**
2. **If changed -> re-certification**

Responsibility: OEM

Approval: TS/TAA

1. **Result protocols**
2. **List of parameters and input data (4.B)**

Responsibility: OEM

Witness: TS/TAA

Approval: TS/TAA

1. **Certification report**
2. **Each case to meet condition Err. ≤0.015m²**

Responsibility: OEM

Approval: TS/TAA

1. **Approved certification report (6.A)**

Responsibility: TS/TAA

OEM = manufacturer

TS = technical service

TAA = type approval authority