The European Commission's science and knowledge service

Joint Research Centre

Progress on thermal propagation testing

Andreas Podias, Akos Kriston, Andreas Pfrang, Vanesa Ruiz, Adriano Antonelli, Lois Brett

Outline

JRC experimental TP activity

Initiation tests: update on inductive heating

- First results from short stack tests
- Next steps: further evaluation and module tests

JRC experimental TP activity

Cell & material

<u>Comparison of initiation</u> techniques

- Trigger energy/ energy release
- Repeatability
 - + ARC, DSC

Short stack

<u>Analyse influential factors on the outcome</u>

- Temperature, SOC...
- Cell configuration
- Spark source

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

<u>Verification and finalization of method</u>

- Round robin tests
- Practical aspects
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

Select equivalent test(s)

Narrow down init. methods

JRC experimental TP activity

Cell & material

Comparison of initiation techniques

Trigger energy/ energy release

Narrow down init. methods

- Repeatability
 - + ARC, DSC

Short stack

Analyse influential factors on the outcome

- Temperature, SOC...
- Cell configuration orientation
- Spark source
- Cell separation

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

Verification and finalization of method

- Round robin tests
- **Practical aspects**
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

Select equivalent test(s)

Recap of previous findings

- Literature review and JRC workshop showed that the currently proposed description of TR initiation techniques in the GTR might not be fully suitable for TP assessment
- Simulation of thermal runaway showed that the resistance (R_{ext}/R_{int}) ratio and the surface-to-volume ratio have the highest impact on thermal runaway probability
- Initiation test campaign showed that TRIM method works reliably on different cell types (also nail penetration worked ok, but it was sensitive to boundary conditions)

Evaluation of methods: if triggering TR is the purpose

Initiation method	Indicators					
	Influence of parameters	Energy insert	Locality	Readiness	Manipulation	Scores
Heating	Low	High	No	Yes	High	2
Steel nail	High	Low	Yes	Yes	High	3
Ceramic nail	High	Low	Yes	Yes	High	3
TRIM method	Low	Low	Yes	Yes	Low	5
Inductive heating	Low	Low	Yes	No	TBC	3

Outline

JRC experimental TP activity

Initiation tests: update on inductive heating

- First results from short stack tests
- Next steps: further evaluation and module tests

Alternative initiation method: Inductive heating

Why?

How?

Alternating electromagnetic field generate local current (eddy current) which in turn generate heat in any closed loop conductors, e.g. Al, Cu, graphite, NMC

- Does not require direct contact: less manipulation may be needed
- Coil geometry is not limited in shape and size

Pouch cell tests

Single coil #4

Double (Helmholtz) coil #5

Preliminary results on single cells

*The current device was not optimized for short 'on' time, therefore the heating energy is just a rough approximation.

1.2 kW for 2 s: ca. 6.5% of cell's energy, single coil around the cell	TR with fire, T_{max} =830°C. TR happened during heating. The case opened near the coil.
1.2 kW for 1 s, ca. 3.3% of cell's energy, single coil around the cell	TR with fire, T_{max} =734°C. TR happened during heating. The case also opened near the coil.
1 kW for 0.5 s, ca. 1.5% of cell's energy, single coil around the cell	TR with fire, T_{max} =741°C. TR happened several seconds after the heater was switched off. The pouch opened near the coil.
1.2 kW for 2 s, ca. 0.41% of cell's energy. The coil is placed parallel to the surface at the middle of the cell	TR with fire, T_{max} =ca. 400°C The pouch opened near the coil.
1.2 kW for 1 s, ca. 0.2% of cell's energy. The cell was placed between the coil.	TR without fire, T_{max} =420°C The cell ruptured at the side but not under the coil.
2.4 kW for 3 s, ca. 0.78% of cell's energy	TR with fire, T_{max} =550°C. The case opened near the coil.

- Locally damage the cell
- Works fast
- Needs small amount of energy

Video 18650, #3

Updated results on single cells

Inductive heating conditions were reproduced (cell replaced by stainless steel screw) and current/voltage and heating duration were measured.

Cell	Nominal power, heating time	Estimated power, heating time	Estimated inserted energy / electrical energy content
#1, 18650 3.1 Ah	1.2 kW for 2 s	max. 1.2 kW for ca. 3.1 s	ca. 6.9 %
#2, 18650 3.1 Ah	1.2 kW for 1 s	max. 1.2 kW for 2.2 s	ca. 3.1 %
#3, 18650 3.1 Ah	1 kW for 0.5 s	max. 1 kW for 1.6 s	ca. 0.9 %
#4, Pouch, 39 Ah	1.2 kW for 2 s	max. 1.2 kW for 3.1 s	ca. 0.5 %
#5, Pouch, 39 Ah	1.2 kW for 1 s	max. 1.2 kW for 2.2 s	ca. 0.25 %
#6, Prismatic, hard Al case, 96 Ah	2.4 kW for 3 s	max. 2.4 kW for 4.2 s	ca. 0.7 %

Conclusion remains valid

 Inductive heating tests showed, that minimal energy input (~1%) was needed to initiate TR. Local initiation is sufficient to trigger TR

Outline

JRC experimental TP activity

Initiation tests: update on inductive heating

- First results from short stack tests
- Next steps: further evaluation and module tests

Draft short stack test matrix

Initiation method	Automotive 39 Ah pouch cells/stacks/modules			
Test type	Cell initiation	Short stack	Module	Total
Heating?				
Ceramic nail				
TRIM method				
Total	5	16	2	23

Short stack test matrix

Initiation method	Automotive 40 Ah pouch cells/stacks/modules			
Test type	2 cell stack	5 cell stack	Module	Total
Ceramic nail	-	4	-	4
TRIM method	3	12	2	17
Total	3	16	2	21

Short stack test matrix: progress

Initiation method	Automotive 40 Ah pouch cells/stacks/modules			
Test type	2 cell stack	5 cell stack	Module	Total
Ceramic nail	_	4	-	4
TRIM method	3	12	2	17
Total	3	16	2	21

Initiation test campaign: severity

Test	Low severity	High severity	Comment
Steel nail	Stop nail at a	Penetrate until	J
Ceramic nail	certain voltage drop (mV)	event	different voltage drop
Heating	1 heater	2 heaters	The heating power per heater kept constant. Increasing the energy intake
TRIM	Lowest possible e.g. 250 °C for pouch	600 °C until event	Varying soaking temperature and time

Testing matrix 5 cell stack tests

Initiation Method	Insulation material	
	None	HKO Defensor-Flex® ML (multilayer) 17
TRIM	6	6
Ceramic nail	2	2
Total	8	8

Compression of ML17 from 5 mm to 4 mm thickness by applying 1 kN (further compression possible with larger force)

Different orientation of the stack (vertical or horizontal cells) will also be assessed for TRIM

Preparatory steps – same compression force (1 kN) for all tests

Ceramic nail penetration // Fast heating (TRIM)

2-cell short stacks // 5-cell short stacks

Ceramic nail penetration tests // 5-cell stack

Graphite/Ni rich NMC pouch cells				
Capacity	Specific energy at C/3	Volumetric energy density at C/3		
40 Ah	150 Wh/kg	230 Wh/I		

Ceramic nail penetration test conditions and location of thermocouples // 5-cell stack without ML

Nail diameter	Circular cone tip angle	Penetration Velocity	SoC
3mm	30°	0.1 mm/s	100%
5cm T1	30 cm	Cell 2 Cell 3 Coll 2 Cell 4 Cell 4	Gypsum end plate

Ceramic nail penetration tests // 5-cell stack without ML

Ceramic nail penetration tests // 5-cell stack with ML

European

Commission

Evaluation of short stack tests (preliminary)

- Progression of TP seems to be predictable for both cases
- ML slowed down TP (by a factor of about 4)

Fast heating (TRIM) test conditions and location of thermocouples // 5-cell stack without ML

Target temperature	Temperature increase rate	SoC
600°C	50°C/s	100%

European

Commission

Fast heating (TRIM) // 5-cell stack // preparations

Evaluation of short stack tests Fast heating (TRIM)

European

Commission

Fast heating (TRIM)

5-cell short stack/Fast heating (600oC; 50oC/s until event)
Without ML
With ML

European

Commission

Still on-going

Preliminary findings

- Initiation by TRIM and ceramic nail penetration works ok
 - Criterion for stopping initiation ('until event') to be evaluated further
- Propagation times
 - Rather consistent for identical conditions
 - Delay of propagation by addition of multi-layer material
 - Statistical analysis will be performed
- Time/criteria for defining/determining thermal runaway to be investigated further

Further steps

- Improve understanding of the different failure mechanisms caused by different methods (e.g. local and global effects)
- Further complementary experimental work at material level (e.g. thermal analysis) and at cell level (ARC)
- Evaluation of stack/module-level TP testing campaign
 Further collaboration with Canada on TRIM method
- Proceed with pack and vehicle level tests

Acknowledgement

BATTEST group

Franco Di Persio Ricardo Da Costa Barata

Denis Dams

Lois Brett

European

Commission

Natalia Lebedeva

Emilio Napolitano Ibtissam Adanouj

Akos Kriston

Andreas Pfrang

Marek Bielewski Vanesa Ruiz

Andreas Podias, Adriano Antonelli, Rene van der Aat (not shown in photo)

Special thanks:

For abuse test execution to ZSW Harry Döring, Michael Wörz, Jan Endlicher, Sven Baum

For provision of HKO Defensor-Flex® ML 17 ulrich.stude@saint-gobain.com, carsten.stoeckmann@saint-gobain.com, steffen.mielke@hko.de

Relevant references

V. Ruiz, A. Pfrang, JRC exploratory research: Safer Li-ion batteries by preventing thermal propagation, Workshop report, ISBN 978-92-79-96399-5, Publications Office of the European Union, https://ec.europa.eu/jrc/en/publication/jrc-exploratory-research-safer-li-ion-batteries-preventing-thermal-propagation

OPEN.

OPEN A. Kriston, A. Antonelli, A. Kersys, S. Ripplinger, S. Holmstrom, S. Trischler; H. Döring, A. Pfrang, Initiation of thermal runaway in Lithium-ion cells by inductive heating, submitted to Journal of Power Sources

OPEN ACCESS

A. Kriston, I. Adanouj, V. Ruiz, A. Pfrang, Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis, Journal of Power Sources 435 (2019), 226774

Project website https://ec.europa.eu/jrc/en/research-facility/battery-energy-storage-testing-safe-electric-transport

360° view of the battery testing laboratory at JRC https://visitors-centre.jrc.ec.europa.eu/virtual-tour/batterytesting/en/

Movie about battery testing at JRC https://www.youtube.com/watch?v=6u2Gjiudcas

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

Back up slides

Ni-rich NMC/graphite 40Ah pouch cells

Ceramic nail penetration tests // 5-cell stack with ML

 (A) t=100 s - cell #1 in TR; first instance of white smoke appearance (nail penetrates from the right hand side)

(B) t=105 s - cell #1 in TR; just after grey smoke and sparks appeared

(C) t=113 s - cell #1 in TR; start of fire

t = 0 s corresponds to start of nail motion (nail might not touch at start)

