# Review of the concept, test data and derivation procedures of vibration proposal

## EVS-GTR 19th

China

#### **1** Information of tested vehicles

- **②** Test layout, Sensor installation and measurement
- **③** Introduction to test roads and methods
- **④** Test data and derivation procedures
- **5** Vibration test conditions

## Information of tested vehicles

M1 N1 group: 2 mini cars, 3 cargo vans, 11 passenger cars, including EV, PHEV and HEV. Wheelbase from 1765mm to 3850mm













| Туре          |      | Wheelbase (mm) | pack location |
|---------------|------|----------------|---------------|
| mini car      | EV   | 1765           | bottom        |
| mini car      | EV   | 2150           | bottom        |
| passenger car | EV   | 2490           | bottom        |
| passenger car | EV   | 2500           | bottom        |
| passenger car | EV   | 2650           | bottom        |
| passenger car | EV   | 2650           | bottom        |
| passenger car | PHEV | 2670           | bottom        |
| passenger car | EV   | 2670           | bottom        |
| passenger car | EV   | 2700           | bottom        |
| passenger car | HEV  | 2700           | Trunk         |
| cargo van     | EV   | 2700           | bottom        |
| passenger car | EV   | 2720           | bottom        |
| passenger car | HEV  | 2775           | Trunk         |
| passenger car | PHEV | 2850           | Trunk         |
| cargo van     | EV   | 3050           | bottom        |
| cargo van     | EV   | 3850           | bottom        |

## Information of tested vehicles

#### Bus group: 7 buses, including EV, PHEV and FCEV.





| Ту  | ре   | Length (mm) | Pack location      |
|-----|------|-------------|--------------------|
| bus | EV   | 12000       | bottom & back      |
| bus | EV   | 12000       | top                |
| bus | PHEV | 10500       | top                |
| bus | PHEV | 8545        | Engine compartment |
| bus | EV   | 8010        | bottom             |
| bus | EV   | 10480       | bottom             |
| bus | FCEV | 12000       | bottom             |

## **Test layout, Sensor installation and measurement**

Sensor layout principle: focus on the installation of fixed parts fixed position
 At least 4 sensors are fixed distributed at different installation points

| N.O. | Position      | Vehicle<br>Direction | Sensor<br>direction | Channels      |
|------|---------------|----------------------|---------------------|---------------|
| 2601 | Right rear    | X<br>Y               | X<br>Z              | AI-0<br>AI-1  |
|      |               | Z                    | Y                   | AI-2          |
| 2602 | Left rear     | Ŷ                    | Ž                   | AI-3<br>AI-4  |
|      |               | Z                    | Y                   | AI-5          |
| 2603 | Right forward | Ŷ                    | Ŷ                   | AI-8<br>AI-7  |
|      | IOIWalu       | Z                    | Z                   | AI-8          |
| 2604 | Left forward  | X<br>Y               | X<br>Y              | AI-9<br>AI-10 |
|      |               | Z                    | Z                   | AI-11         |





### Introduction to test roads and methods

#### Test specification

- Tongxian test ground car product stereotypes reliability driving test specification (2000 edition)
- It is based on the characteristics of China's road conditions, and widely recognized and used in vehicle type test in China
- The test route, speed, tire pressure, weight and other conditions were set according to the test specification

## Introduction to test roads and methods

Rough roads and test procedure

#### For passenger car

| Seq. | Rough roads             | length<br>(m) | %      | Vehicle<br>speed<br>(km/h) | Test<br>times |
|------|-------------------------|---------------|--------|----------------------------|---------------|
| 1    | Twisting road B         | 85            | 2.02%  | 10                         |               |
| 2    | Belgian road C          | 300           | 7.14%  | 40                         |               |
| 3    | Belgian road B          | 989           | 23.53% | 50                         |               |
| 4    | Belgian road B          | 989           | 23.53% | 50                         |               |
| 5    | Cobble-<br>stone road B | 335           | 7.97%  | 50                         | 3             |
| 6    | Gravel road             | 815           | 19.39% | 40                         |               |
| 7    | Washboard Road<br>C     | 300           | 7.14%  | 50                         |               |
| 8    | Belgian road C          | 300           | 7.14%  | 50                         |               |
| 9    | Long wave road          | 90            | 2.14%  | 50                         |               |



**D** Time domain data transform into frequency domain data

Only the data on the rough roads were extracted.





#### Effective pavement

Because each vehicle is equipped with multiple sensors, for each kind of road, we choose the data of the sensor with the maximum RMS as the data of the road.







| Circle | Sensor No. | X energy<br>(g) |
|--------|------------|-----------------|
| S1     | 7#         | 0.158           |
|        | 8#         | 0.391           |
|        | 9#         | 0.259           |
|        | 10#        | 0.405           |

|  | Circle | Sensor No. | Y energy<br>(g) |
|--|--------|------------|-----------------|
|  | S1     | 7#         | 0.270           |
|  |        | 8#         | 0.320           |
|  |        | 9#         | 0.232           |
|  |        | 10#        | 0.208           |

| Circle | Sensor No. | Z energy<br>(g) |
|--------|------------|-----------------|
| S1     | 7#         | 0.311           |
|        | 8#         | 0.275           |
|        | 9#         | 0.406           |
|        | 10#        | 0.488           |

Each vehicle has been tested three times in the whole test site, that is to say, each road has been tested three times. We take the average value of three times of tests for each road as the vibration data of the road.



According to the test specifications, different vehicles need to be tested many times on the test road, we need to conduct 714 loops for passenger cars.

|      | One loop            | (passe        | nger car)               |                     |
|------|---------------------|---------------|-------------------------|---------------------|
|      |                     | 1             | 2                       | (3=1)/2<br>/1000    |
| Seq. | Rough roads         | length<br>(m) | Vehicle speed<br>(km/h) | Driving time<br>(h) |
| 1    | Twisted road B      | 85            | 10                      | 0.0085              |
| 2    | Belgian road C      | 300           | 40                      | 0.0075              |
| 3    | Belgian road B      | 989           | 50                      | 0.024725            |
| 4    | Belgian road B      | 989           | 50                      | 0.024725            |
| 5    | Cobble-stone road B | 335           | 50                      | 0.0067              |
| 6    | Gravel road         | 815           | 40                      | 0.020375            |
| 7    | Washboard Road C    | 300           | 50                      | 0.006               |
| 8    | Belgian road C      | 300           | 50                      | 0.0075              |
| 9    | Long wave road      | 90            | 50                      | 0.0018              |

#### To accelerate the test time to 12h

#### A.6.2 Outline

A typical failure mode due to vibration stress is fatigue. The equivalent fatigue time or vibration intensity level can be calculated using <u>Formula A.1</u>:

$$\frac{W_1}{W_2} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{m}}$$
(A.1)

where

- $W_1$  is the vibration acceleration level 1;
- $W_2$  is the vibration acceleration level 2;
- $T_1$  is the endurance testing time 1;
- $T_2$  is the endurance testing time 2;
- *m* is the acceleration coefficient.

*m* can have different numerical values depending on the material (usually from 3 to 9). The general value of the metal fatigue in random vibration is m = 4 but, as DUT consists of various components, m = 5 was adopted.

#### **Refer to ISO DIS 19453-3** <sup>12</sup>

#### □ To accelerate the test time to 12h

|       |               |          |       |                                                   |             |           |            |           |          |         |                         | -        | 0./1665 |
|-------|---------------|----------|-------|---------------------------------------------------|-------------|-----------|------------|-----------|----------|---------|-------------------------|----------|---------|
| 200Hz | b             | efore    | Accel | erated calculation (                              | )           | after Acc | elerated   | calculat  | ion@     |         |                         | 7        | 0 92560 |
| NO    |               | Rad r    | oad   | Vibration L:                                      | lfe         | MAX-Vib   | ration     | NEW-Li    | fe       |         |                         |          | 0.02000 |
|       |               | Dua 1    |       | energy(g) tim                                     |             | energ     | ··(7)      | +ima(1    | -)       |         | 0                       | 8        |         |
| 1     | Dis           | 6Hz      | b     | efore Accelerated ca                              | Iculation ( | /         | after      | Accelerat | ed calcu | ulation |                         | Ū        | 1.01077 |
| 2     | B             | NO       | 5Hz   | before Accelera                                   | ted calcula | tion ①    |            | aft       | er Accel | lerated | calculation@            |          | •       |
| 4     |               | -        | NO    | Bad road                                          | Vibration   | Life      |            | Ma        | AX-Vibra | tion    | NEW-Life                | •        | •       |
| 5     | Cobh          |          | no    | Dau 10au                                          | energy(g)   | time(h)   |            |           | energy(  | (g)     | time(h)                 | •        | •       |
| 6     | Sa            | 2 -      | 1     | Distortion road B                                 | 0.3283580   | 5 6.117   |            |           | 0.794364 | 445     | 0.073820642             |          |         |
| 7     | Wa            | <u> </u> | 2     | Belgian road C                                    | 0.6898377   | 5 5.397   |            |           | 0.794364 | 445     | 2.665558393             | 198      | 0.0016  |
| 8     | B             | <u>+</u> | 3     | Belgian road B                                    | 0.6819570   | 1 14.234  |            |           | 0.794364 | 445     | 6.637628641             |          |         |
| 9     | L             | <u> </u> | 4     | Belgian road B                                    | 0.6256979   | 1 14.234  |            |           | 0.794364 | 445     | 4.315702337             | 100      | 0.0017  |
|       | 44            | 7 -      | 5     | Cobble-stone road H                               | 0.1675875   | 8 4.318   |            |           | 0.794364 | 445     | 0.001804649             | 199      | 0.0017  |
|       |               | <u> </u> | 6     | Sand stone road                                   | 0.2527562   | 1 14.68   |            |           | 0.794364 | 445     | 0.047878025             | 000      | 0.0040  |
|       | <del>86</del> | <u> </u> | 7     | ₩ashboard Road C                                  | 0.1847631   | 4.318     |            |           | 0.794364 | 445     | 0.002939135             | 200      | 0.0016  |
|       |               | 7        | 8     | Belgian road C                                    | 0.7943644   | 5 4.318   |            |           | 0.794364 | 445     | 4.31                    |          |         |
|       |               |          | 9     | Long wave road                                    | 0.2524709   | 4 1.295   |            |           | 0.794364 | 445     | 0.0041991 2             |          |         |
|       |               |          |       | Total                                             |             | 68.91     | 3          |           | 0.794364 | 445     | 18.06753161             |          | •       |
|       |               |          |       |                                                   |             |           | @Regulariz | zation    | 0.770824 | 848     | 12                      |          |         |
|       |               | •        | min   | er' law (1-                                       | →②、③-       | →④)       |            |           |          |         | 0.1                     |          |         |
|       |               |          |       | $\frac{W_1}{W_2} = \left(\frac{T_2}{T_1}\right)'$ | n           |           |            |           |          |         | SD (g <sup>2</sup> /Hz) | <u> </u> |         |
|       |               | •        | The   | relationship b                                    | oetween     | RMS an    | d PSD      | is as f   | ollow    | /:      | ۵. 1E-3                 |          |         |
|       |               |          | 1     | > /-                                              | (DOD        |           | - >        |           |          |         | 1E-4                    |          |         |

**PSD** 

(g)<sup>2</sup>/Hz

0.60221

- - - - - - -

Frequency (Hz)

5

6

10

Frequency (Hz)

100

$$(g)_{\rm rms} = \sqrt{\Sigma(PSD \times \Delta Hz)}$$

Then we get the PSD of 12h of all tested vehicles
The peaks were caused by corrugation road, how to deal with them?
How to choose the vibration test conditions?



□ The peaks were caused by corrugation road

#### 1. Corrugation road

✓ The data of corrugation road was extracted separately to carry out the constant frequency vibration, and the other roads surface data were developed to obtain random vibration test condition





t<sub>o</sub>

2\*f<sub>0</sub>

✓ Excitation frequency  $f = v/\lambda$ , here  $\lambda$ =0.58m

| v(km/h) | 10  | 20  | 30   | 40   | 50   | 60   | 70   |
|---------|-----|-----|------|------|------|------|------|
| f(Hz)   | 4.8 | 9.6 | 14.4 | 19.2 | 24.0 | 28.7 | 33.5 |

## **Vibration test conditions**

#### □ The results and recommended vibration test conditions



| Direction | MAX    | AVG    | CN proposal | Median | ISO 6469-1 | MIN    |
|-----------|--------|--------|-------------|--------|------------|--------|
| Z         | 1.3468 | 0.6364 | 0.6364      | 0.4821 | 0.2647     | 0.2060 |
| Y         | 0.8922 | 0.4378 | 0.4378      | 0.3539 | 0.2520     | 0.1486 |
| x         | 1.1094 | 0.4910 | 0.4910      | 0.3568 | 0.2343     | 0.1253 |

## Thanks for your attention!