Localized fire test for improve reproducibility -Selection of standardized burner-

GTR No.13 TF#4

5 November 2019 @ SpOrt Stuttgart, Stuttgart, Germany

Selection of burner specifications @CSA Evaluation of Bunsen type burner @JARI

Selection of burner specifications @CSA Evaluation of Bunsen type burner @JARI

Issue

As a reproducibility improvement plan, JARI will continue to consider the following two options for improving the test method.

Test method 1-a: Prescribed burner configuration

- The LPG flow range that satisfies the container surface temperature of the JARI vehicle fire test using the standardized burner is specified.
- ✓ It is confirmed that the container bottom temperature specified in GTR13 phase 1 is satisfied within the specified LPG flow rate range during the fire test.

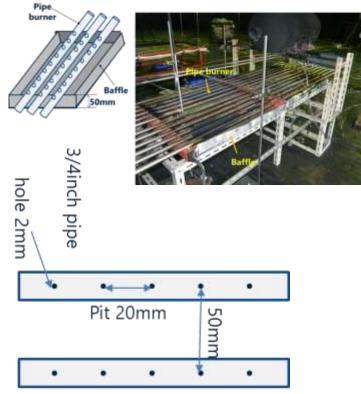
Test method 1-b: No specified the burner configuration

- ✓ Before the fire test, the LPG flow rate that satisfies the surface temperature of the standard container of the JARI vehicle fire test is derived, and the uniformity of the fire source is proved.
- The fire test of the container is performed at the LPG flow rate obtained above. (The measurement of the temperature at the bottom of the container is aimed at the absence of wind effects)

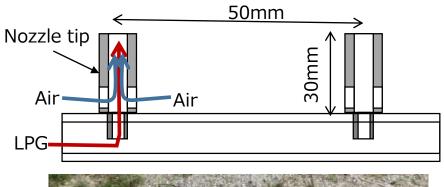
- There is a method of specifying the configuration of the burner and the LPG flow rate range.
- However, it is considered that variations may occur depending on the difference in the environment of the test site (ex. barriers and windbreaks).
- Also, in order to determine the structure of the burner, we want to understanding the influence of the difference in the structure of the burner of each Laboratory.
- ✓ JARI and CSA conducted the fire test using two burners.

 Objective to achieve Reproducibility / Repeatability of testing result between testing labs

- Different burner designs
- Wind effects (test area)


Bonfire testing Data

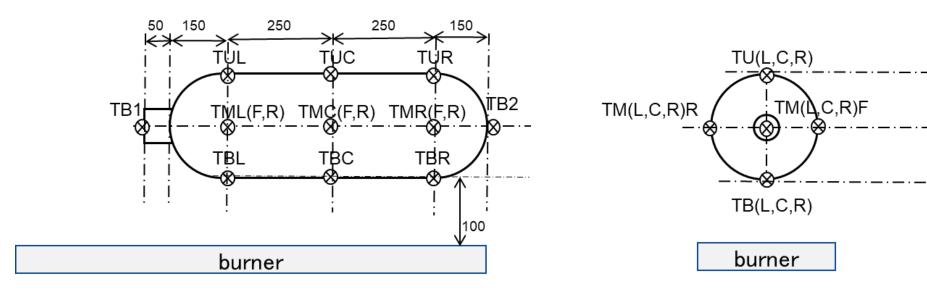
- ✓ Two days of testing at CSA Group Langley
- ✓ DAY 1 CSA Parking lot testing (with wind effects)
- ✓ DAY 2 Field Site testing (with no wind effects)
 - Bonfire test burner inside protective steel tube to mitigate wind effects
- Two types of comparison tests performed
 - 1. UN-GTR bonfire profile
 - 2. Stepping flow test
- Two types of burners used
 - 1. Pipe Burner Diffusion flame JARI design
 - 1-2mm drilled holes, located 20mm apart
 - 2. Bunsen type Burner- CSA design
 - Fuel mixing burner tips, located 50mm apart


	Bunsen type burner	Pipe burner				
$L \times W$	177 cm x 31.5 cm	163 cm x 25 cm				
Space between tips or hole	50mm	20 mm				
Space between tubes	105mm	50 mm				
Premix	Yes (Air is mixed by the venturi effect resulting from the LPG flow.)	no				
Nozzle tip	yes	no (hole only)				
Tank	Steel D=320 mm L= 950 mm	Steel D=320 mm L= 950 mm				
Tube diameter	3/4" pipe	3/4 " pipe				

Comparison of Burners

Pipe burner

Bunsen type burner



location & orientation of nozzle tip

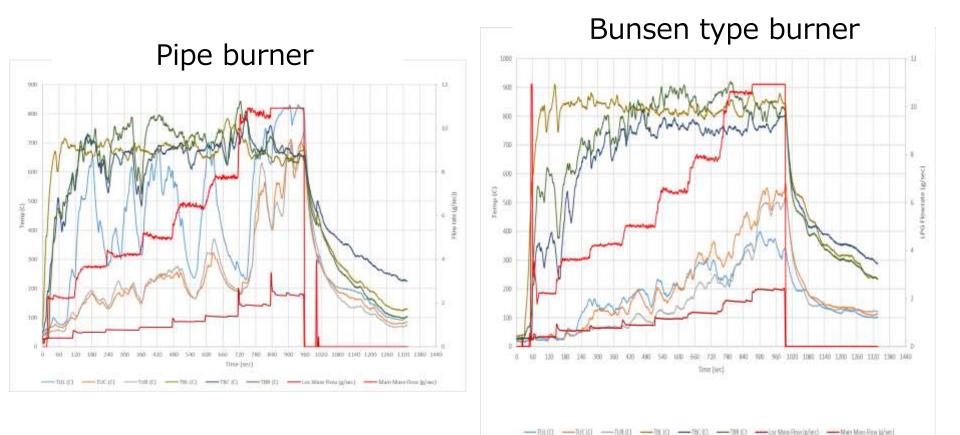
Test Tank Setup

⊗ Thermocouple

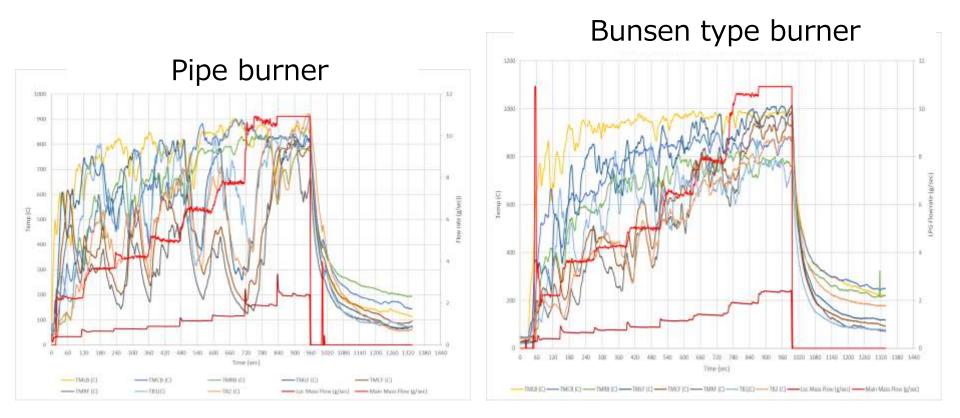
Note: Temperature within 5mm from the container surface. It is not the temperature at 25mm from the surface specified by GTR13.

Engulfing Fire in Parking Lot

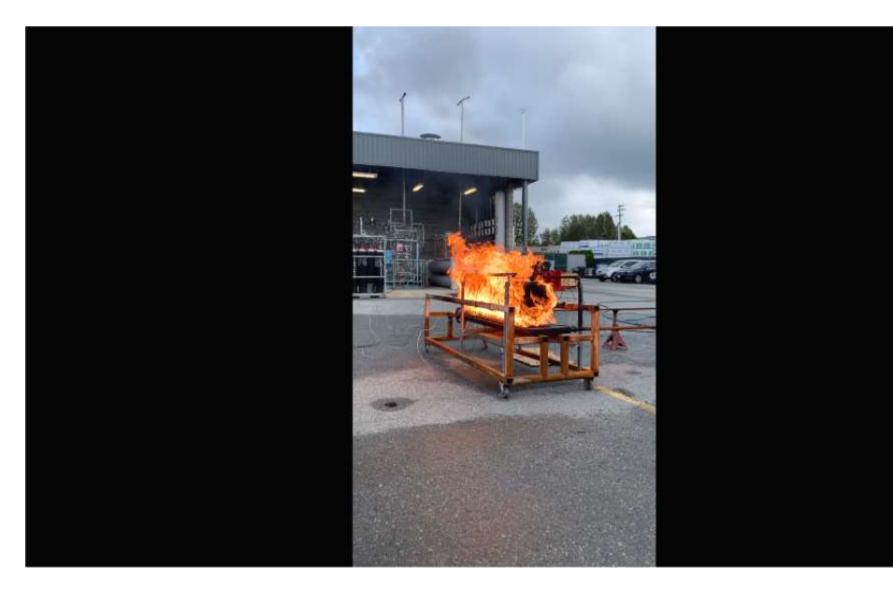
Pipe burner



Bunsen type burner


Burner Comparison In Parking Lot – Step Flow

• Bottom (TB) & Top (TU) Temperatures



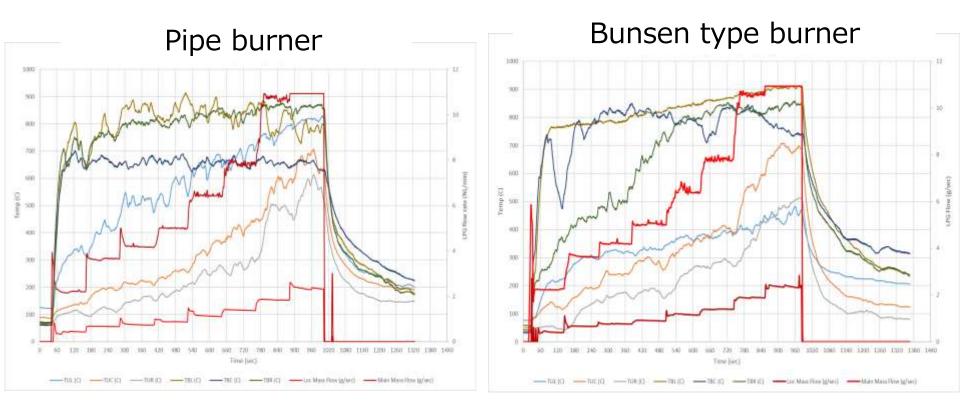
Burner Comparison In Parking Lot – Step Flow

• Middle Temperatures

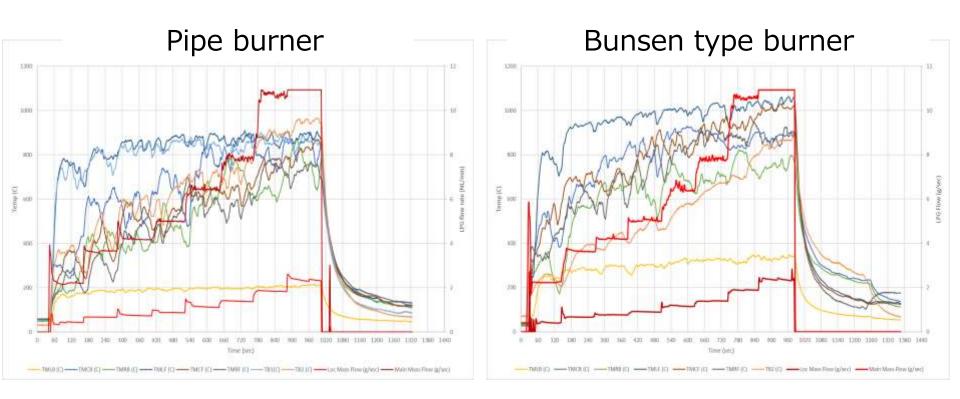
Pipe burner

Engulfing Fire in Tube

Pipe burner



Bunsen type burner


Burner Comparison in Tube – Step Flow

• Bottom (TB) & Top (TU) Temperatures

Burner Comparison in Tube – Step Flow

• Middle Temperatures

Bunsen type burner

150NL/min

250NL/min

180NL/min

280NL/min

230NL/min

380NL/min

Bunsen type burner

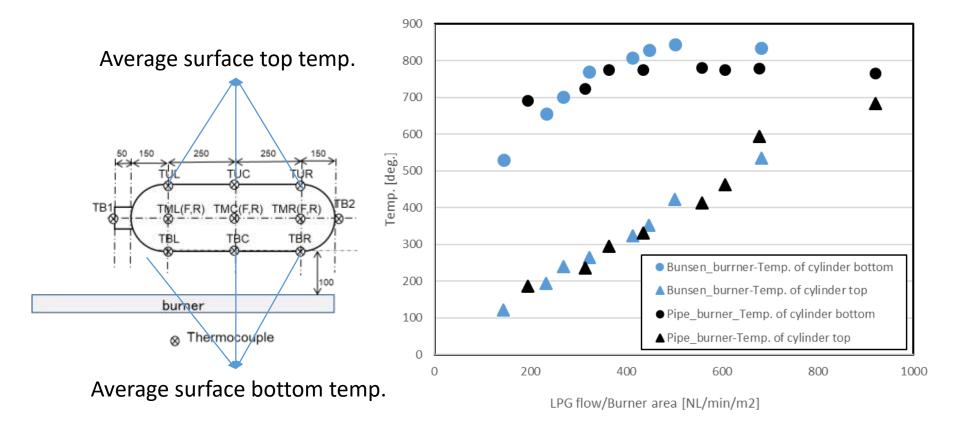
Pipe burner

150NL/min

180NL/min

230NL/min

250NL/min



280NL/min

380NL/min

Ave. Cylinder surface Top and bottom temperature

In the absence of wind, there is little difference between a pipe burner and a Bunsen type burner.

Discussion

- The Bunsen type burner used in this test is less disturbed by the wind than the pipe type diffusion flame burner, and the temperature profile around the container is stable.
- In addition, the specification of this Bunsen type burner is easy and has features that make it easy to set temperature conditions based on JARI's vehicle fire test data.
- As a result of the above, JARI concluded that the Bunsen type burner is appropriate for the standard burner specified by Method1-a.
 JARI evaluated the Bunsen burner at indoor fire testing site where there is almost no wind influence.

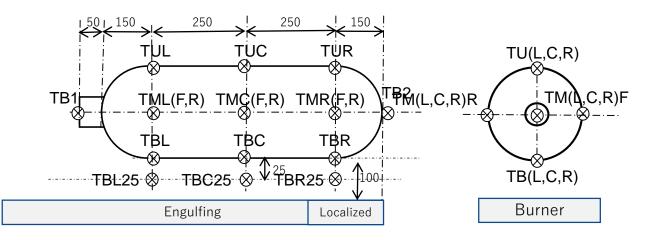
Burner	Applicability	Burner specification	Cost	Flame type	Judgment
Bunsen type	O (Insensitive to wind. Wide temperature range can be set with low flow rate.)	© (Burner tips used in the market)	0	Partial pre-mix flame	Ø
Pipe Pipe burner	\bigcirc (Only No wind case)	© (Simple)	O	Diffusion flame	\bigtriangleup
Blanket	△ (Only No wind case, See at appendix)	X (Difficult to obtain parts in each country)	Ο	Diffusion flame	\bigtriangleup

Selection of burner specifications @CSA Evaluation of Bunsen type burner @JARI

JARI fire test -part1 (Method1-a)

The LPG flow range that satisfies the container surface temperature obtained in the JARI vehicle fire test is derived.

During the fire test, examine the temperature around the container at a constant wind speed to guide how to monitor the wind.

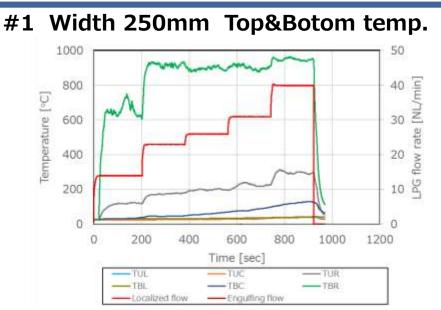

Burner : Bunsen type burner

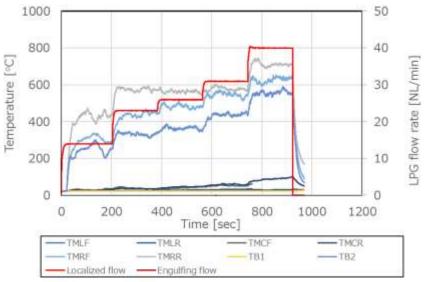
Tank: Simulated container used in vehicle fire test (dia. 320×length 850mm)

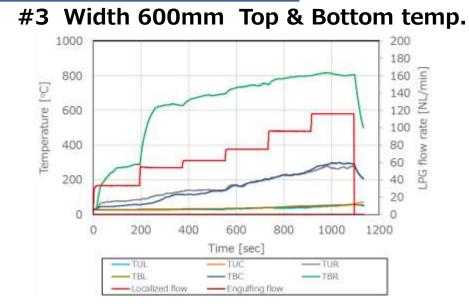
Test #	Burner width[mm]	Fire stage (Length[mm])	Wind velocity[m/s]	Wind direction	Fire location
1	250	Localized fire 250	0	None	100
2	250	Engulfing fire 1000			
3	600	Localized fire 250			
4	600	Engulfing fire 1000			
5	250	Engulfing fire 1000	3	Diagonal direction	

JARI fire test (Method1)

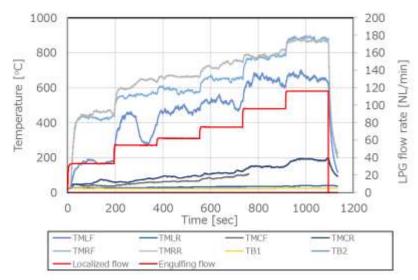
Thermocouple



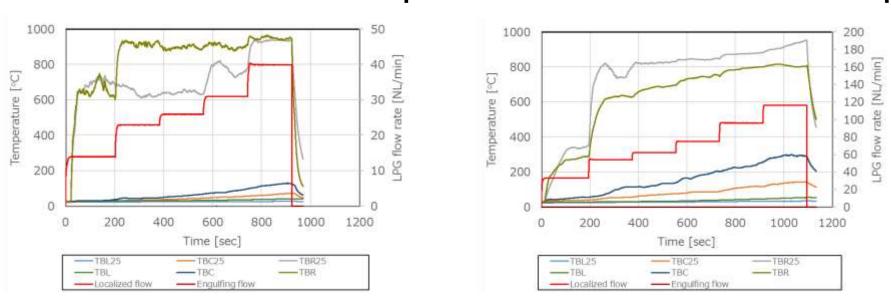

location & orientation


Burner (Width 600mm)

Case of Localized fire -Step Flow Test

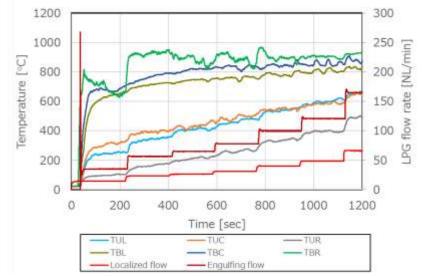


#1 Width 250mm Middle temp.

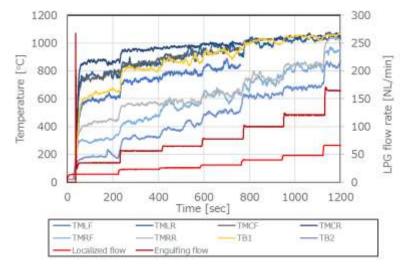


#3 Width 600mm Middle temp.

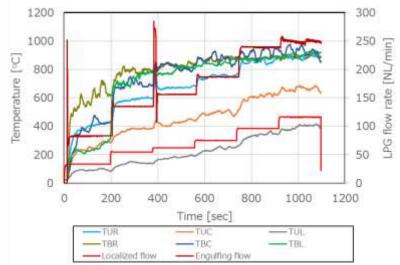
Case of Localized fire –Step Flow Test

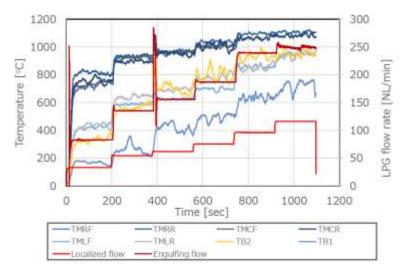


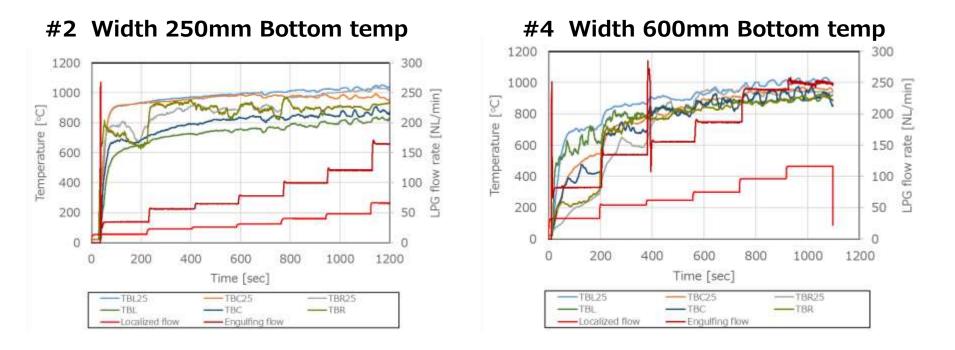
#1 Width 250mm Bottom temp


A burner with a width of 600 mm can be controlled over a wider temperature range.

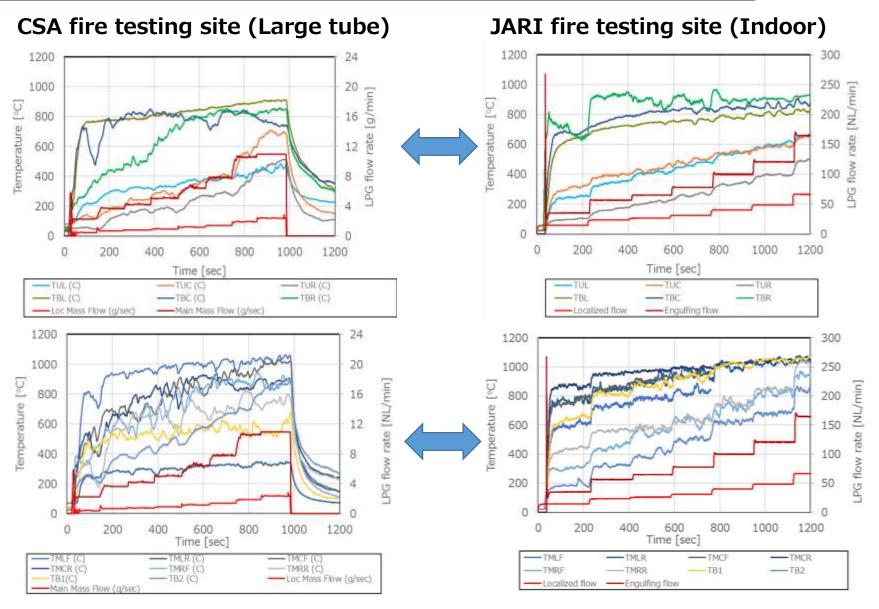
Comparison of width – Case of engulfing fire , Step Flow


#2 Width 250mm Top&Botom temp.

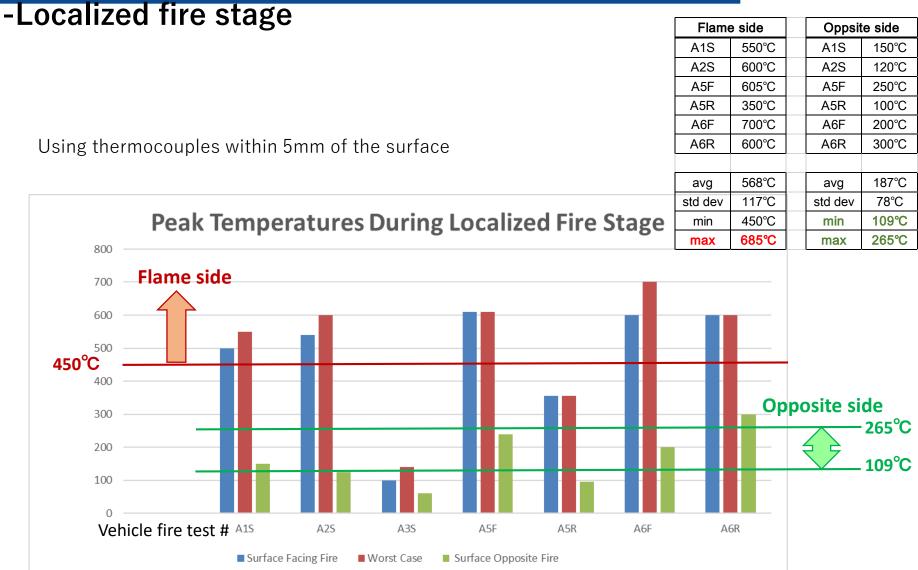

#2 Width 250mm Middle temp.


#4 Width 600mm Top & Bottom temp.

#4 Width 600mm Middle temp.


Comparison of width – Case of engulfing fire , Step Flow

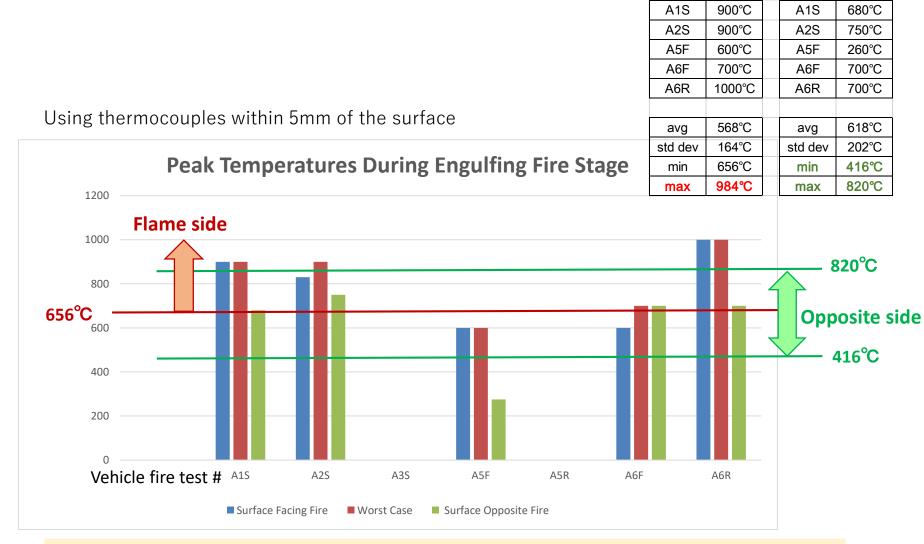
A burner with a width of 600 mm can be controlled over a wider temperature range.


30

Round robin test – Case of engulfing fire , Step Flow, width=250mm

There is almost no difference between the two laboratories.

Operating window of the configuration

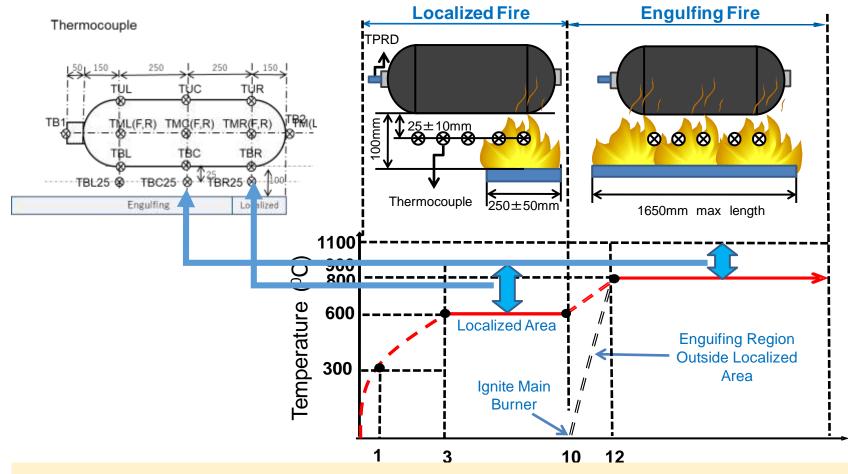


Require temp. of localized fire stage

Flame side (TBR) = 450 °C or more, Opposite side (TUR) = 109 – 265°C

Operating window of the configuration

-Engulfing fire stage


Flame side

Oppsite side

Require temp. of engulfing fire stage

Flame side (TBR) = 656 °C or more, Opposite side (TUR) = 416 – 820°C

GTR13 phase1 bottom temp under 25mm

Require temp.

Localized fire stage TBR25 = 600-900 °C , Engulfing fire stage TBC25 = 800 – 1100°C

Test#1-2 (Wide=250mm, Localized fire)

Localized fire requirement temperature: TBR (450°C more), TBR25(600-900°C), TUR(109-265°C)

Temp. of cylinder bottom (TBR)	Temp. of cylinder bottom (TBR25)	Temp. of cylinder top (TUR)	LPG Flow rate [NL/min]	HRR [kW]	Diffusion flame
650°C	470°C	105°C	10	16	Diffusion name
720°C	680°C	112°C	14	22	
865°C	650°C	155°C	17	27	Premix flame
905°C	625°C	165°C	20	32	
900°C	665°C	200°C	23	37	
885°C	710°C	220°C	26	41	
855°C	685°C	250°C	30	48	
960°C	880°C	300°C	40	64	
960°C	930°C	370°C	50	80	

For a localized fire with a width of 250 mm, the required temperature is satisfied when the LPG flow rate is in the range of 17 to 30 NL / min.

Test#2 (Wide=250mm, Engulfing fire)

Engulfing fire requirement temperature: TBC (656°C more), TBC25(800-1100°C), TUC(416-820°C)

Temp. of cylinder bottom (TBC)	Temp. of cylinder bottom (TBC25)	Temp. of cylinder top (TUC)	LPG Flow rate [NL/min]	HRR [kW]
680°C	925°C	315°C	48	77
780°C	950°C	395°C	79	126
820°C	980°C	440°C	91	145
830°C	975°C	500°C	109	174
850°C	975°C	550°C	139	222
855°C	970°C	585°C	170	271
870°C	960°C	655°C	230	367

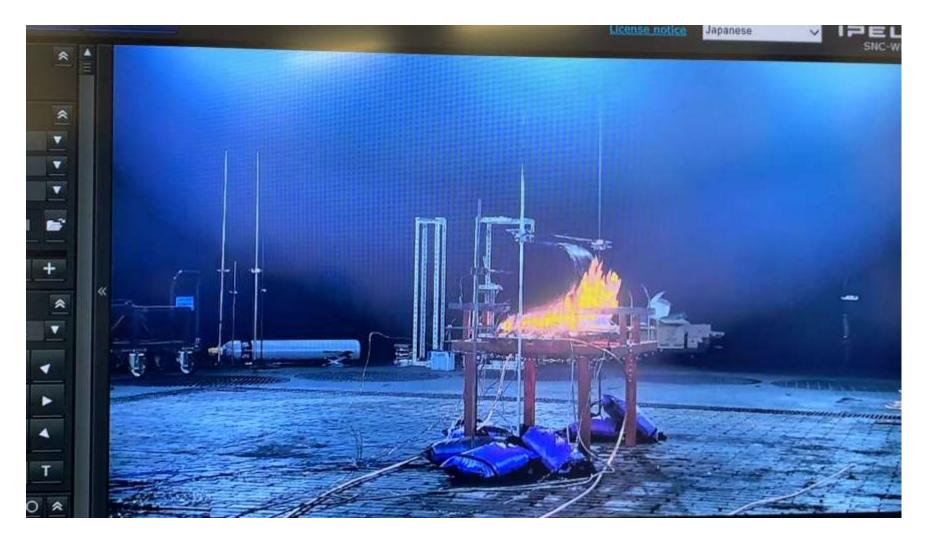
The required temperature is satisfied when the LPG flow rate is 91 NL /min or more.

Test#3 (Wide=600mm, Localized fire)

Localized fire requirement temperature: TBR (685 °C more), TBR25(600-900°C), TUR(109-265°C)

Temp. of cylinder bottom (TBR)	Temp. of cylinder bottom (TBR25)	Temp. of cylinder top (TUR)	LPG Flow rate [NL/min]	HRR [kW]
280°C	340°C	80°C	33	53
630°C	745°C	120°C	54	86
690°C	825°C	140°C	61	97
745°C	845°C	190°C	75	120
795°C	880°C	230°C	96	153
805°C	935°C	270°C	116	185

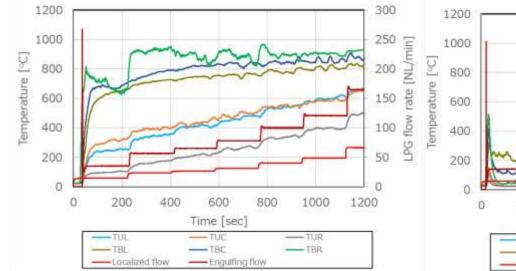
For a localized fire with a width of 600 mm, the required temperature is satisfied when the LPG flow rate is in the range of 54 to 96 NL / min.

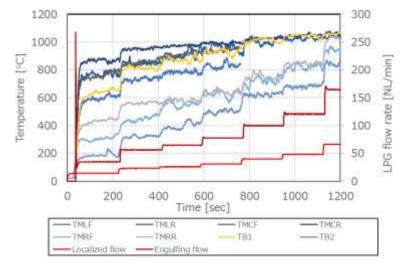

Test#4 (Wide=600mm, Engulfing fire)

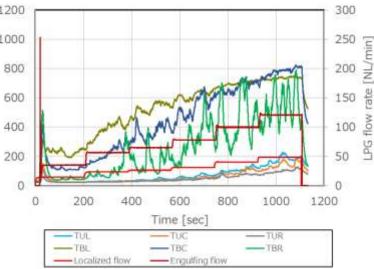
Engulfing fire requirement temperature: TBC (656°C more), TBC25(800-1100°C), TUC(416-820°C)

Temp. of cylinder bottom (TBC)	Temp. of cylinder bottom (TBC25)	Temp. of cylinder top (TUC)	LPG Flow rate [NL/min]	HRR [kW]
435°C	520°C	275°C	116	86
700° C	740°C	380°C	189	301
800°C	835°C	435°C	218	348
865°C	900° C	500°C	262	418
930°C	945°C	620°C	335	534
930°C	960° C	670°C	365	582

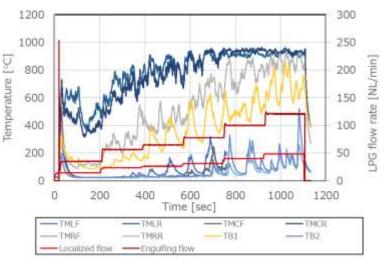
For the engulfing fire with a width of 600 mm, the required temperature is satisfied when the LPG flow rate is 218 NL/min or more.

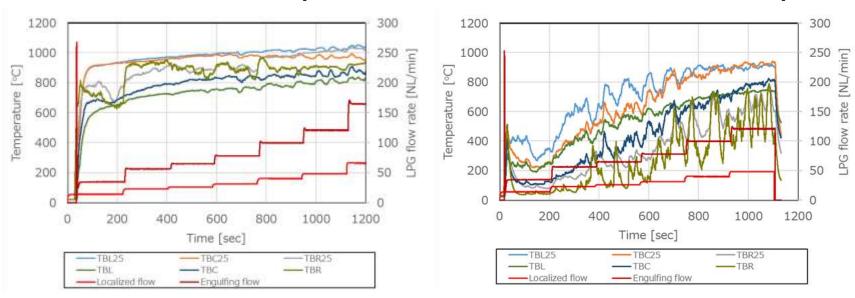

Wind effect Test #5(Wide=250mm, Engulfing fire)


Wind effect – Case of engulfing fire , Step Flow



#5 wind 3m/s Top & Bottom temp.





#5 Wind 3m/s Middle temp.

Wind effect – Case of engulfing fire , Step Flow, Width 250mm

#2 No wind Bottom temp

#5 Wind 3m/s Bottom temp

In the presence of wind, the temperature around the container decreases. Also, a temperature difference occurs depending on the wind direction. It is considered possible to monitor the wind by regulating the temperature variation 25mm below the container bottom 25mm defined in GTR13 phase 1 and the LPG flow rate. JARI was evaluate the Bunsen burner at an experimental site where there is almost no wind influence.

Dimensions (width)

A burner with a width of 600 mm can be controlled over a wider temperature range.

LPG flow rate

The LPG flow rate that satisfies the required temperature is in the range of 54 - 96NL/min during localized fire stage, or more 218NL/min during engulfing fire stage.(width 600mm)

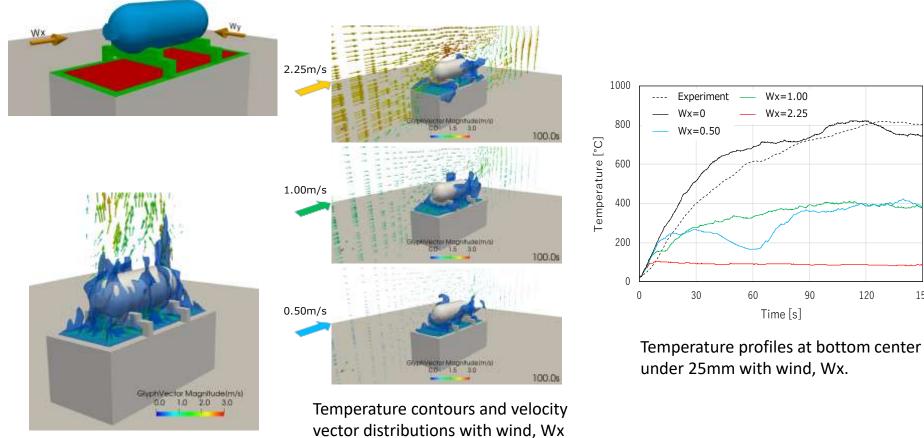
Round robin

➤ There was little difference between CSA and JARI.

Wind

It is considered possible to monitor the wind by regulating the temperature variation 25mm below the container bottom 25mm defined in GTR13 phase 1 and the LPG flow rate.

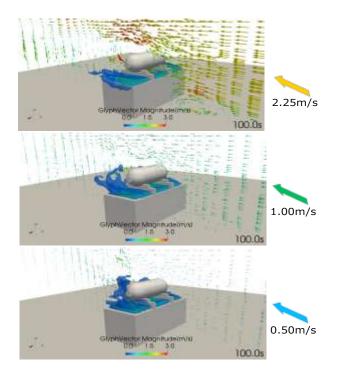
JARI Fire testing Schedule

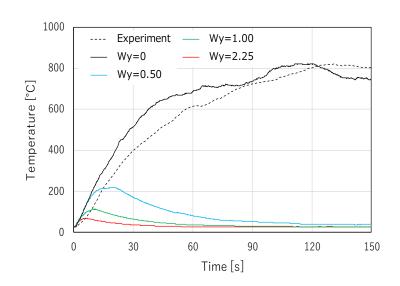

		S	ер-19				Oct-19	Oct-19				Vov-19			Dec	-19	
	1-7	8-14	15-21	22-28	9/29-5	6-12	13-19	20-26	27-11/2	3-9	10-16	17-23	24-30	1-7	8-14	15-21	22-28
			Cre	ate Pre	-mix burı	ner											
JARI TEST							Burner w LPG step Wind effe							Add. test			
SAE TF4						*											
GTR 13										\$							

	Mar-20			1		20	Feb-2			Jan-20				
	22-28	15-21	8-14	1-7	23-29	16-22	9-15	2-8	26-2/1	19-25	12-18	12/29-1/4 5-11		
elcome to Hy-SEF!	W													
				Demonstration @Hy-SEF			-					Add. test		
	L'AN			☆ (Tokyo)				*						

hard the same

Appendix


The effect of wind on the blanket burner


No wind case

150

The effect of wind on the blanket burner

Temperature contours and velocity vector distributions with wind, Wy

Temperature profiles at bottom center under 25mm with wind, Wy.