BAM is a senior scientific and technical Federal institute with responsibility to Federal Ministry for Economic Affairs and Energy.

Sicherheit in Technik und Chemie

6th & 7th Nov. 2019

BURST STRENGTH AS SAFETY CRITERIA FOR TYPE 4 COMPOSITE PRESSURE VESSELS

Dr. Georg W. Mair (Germany)

7th WG on rev GTR 13, Stuttgart

Safety aspects are independent from the kind of usage

No failures? Hydrogen storage is currently not a real safety issue.

But, there is a request for weight and cost savings!

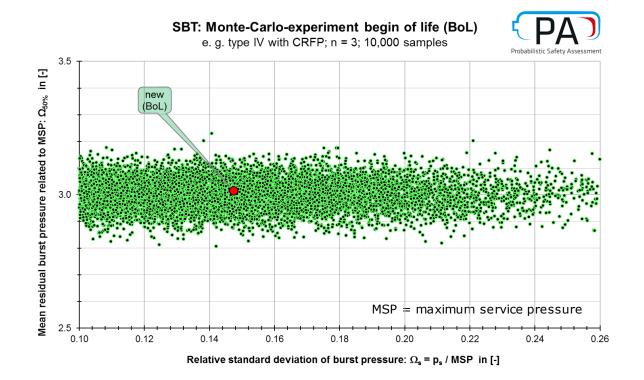
How to assess the intended reduction of "safety factors"?

Technical safety

Safety is achieved when ...

.... the probability (frequency) of a failure during the service life is acceptable!

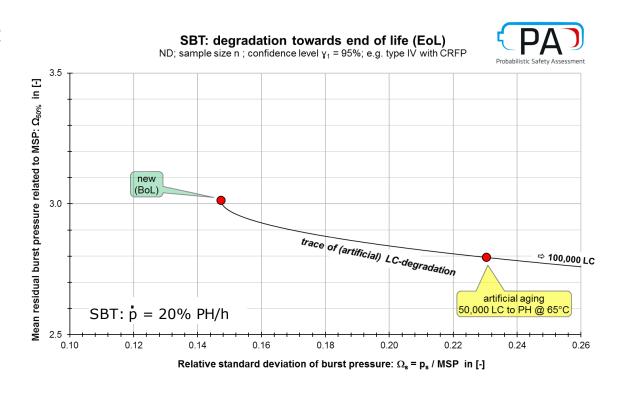
Or in other words:


We try to reduce the frequency of failures as good as possible (in the frame of acceptable effort).

Real life: "scattering"

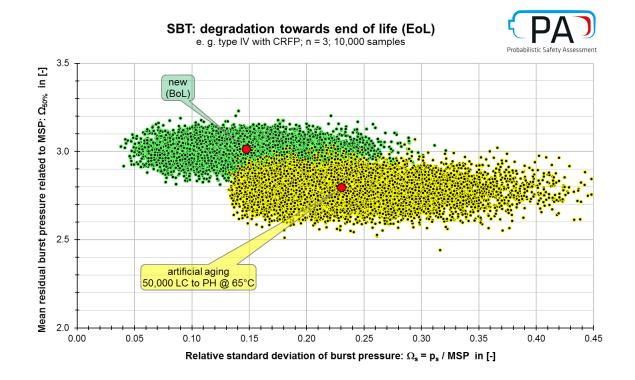
Experience shows that no CPV is identical to another: all properties scatter around the unknown, global properties of the basic population.

Right: e.g. properties of a simulated production of 30,000 CPV in 10,000 samples



Real life: "ageing" i.e. strength degradation

Experience shows that all properties change when becoming older (ageing).

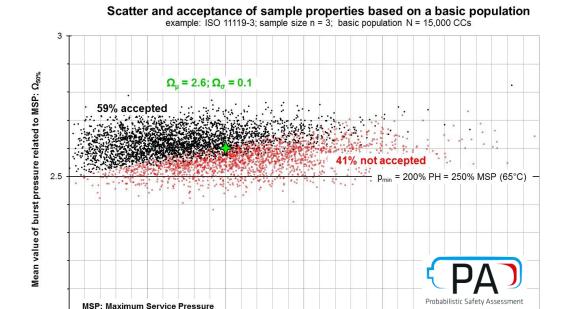

Right: change of properties of samples from a type IV CF-PV design type tested with slow burst procedure; aging by high temperature load cycling

Real life: ageing and degradation

Right: schematic and exemplary simulation of the change of sample properties of a population of 30.000 CPVs grouped in 10.000 samples after ageing.

Technical safety

The key point of technical safety is to ensure that ...


.... the probability (frequency) of a failure at the end of life experienced under normal conditions is still acceptable!

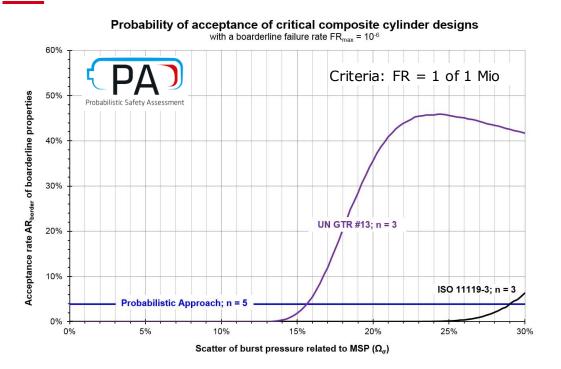
But there are aspects making life complicate:

- Mean and scatter of the population age during service
- The way and quantity of ageing depends on the design type behaviour, the production and the service conditions

What we currently do (BoL)

15%

Scatter of burst pressure related to MSP: Ω_e


 When you ask for a minimum burst pressure on the basis of a small amount of CPVs to be tested there is always a high influence of chance in the test result.

(real properties of the basic population (BB) are green; accepted samples of this BB black; rejected samples red)

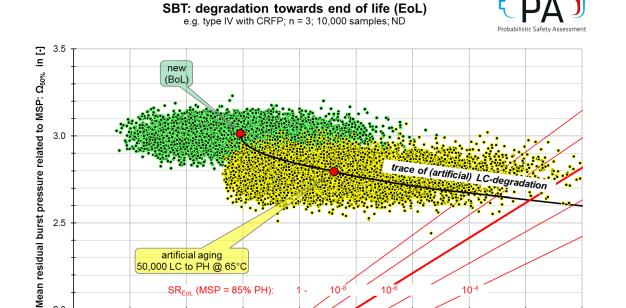
25%

What we currently do (BoL)

- Left: Analysis of the probability accepting insufficient populations accord to current regulations by Monte-Carlo simulation.
- Outcome: The lower the min burst ratio is the lower the accepted production scatter must become.

What we should do (EoL)

 SR_{Eol} (MSP = 85% PH):


0.10

0.15

0.00

0.05

0.20

We are not able to describe the real properties of a basic population: not at BoL and surely not at EoL

Nevertheless, we have to avoid parts of the population with an unaccepted failure rate.

0.25

Relative standard deviation of burst pressure: $\Omega_s = p_s / MSP$ in [-]

0.30

0.35

0.40

0.45

What we do / should do

Currently

- Minimum burst pressure
- Det. average burst pressure
- Limitation of scatter of initial burst pressure
- Artificial ageing with accepting a lowered min burst ratio

Future

- Maximum failure rate at MSP of burst pressure
- Survey of production scatter
- Maximum failure rate subsequent to artificial ageing
- Check of in-service degradation

Conclusions

- Currently, we focus on the properties at begin of life on the basis of a few test specimens usually from pre-production and not from mass production.
- This is accompanied by certain tests on individuals, which simulate artificial ageing but do not reflect influences on scatter.
- The impact of a reduction of initial burst strength on the guaranteed EoL reliability of populations of composite cylinders has not been demonstrated up to now.
- The scatter of production and the in-service degradation should be considered somehow.
- Can we really anticipate this during the design type approval process?
 How?

BAM is a senior scientific and technical Federal institute with responsibility to Federal Ministry for Economic Affairs and Energy.

Thank you for your attention!

georg.mair@BAM.de