Functional Requirements for Automated Vehicles

Where to start?
Mandate

• Develop functional requirements for AV
 • In particular, combination of different functions (SAE level 2+)
 • Cover requirements for Functional Safety
• In line with following principles:
 a) System safety
 b) Failsafe response
 c) HMI/Operator information
 d) OEDR
Background Definitions

• Functional Requirements
 • Define the function of a system
 • System must do ______. (mandatory)
 • The “what?”

• Non-Functional requirements
 • Define criteria that can be used to judge the system
 • System shall do ______. (suggestion)
 • The “how?”
Where to start?

• Requirements vary based on a number of factors including:
 • General requirements
 • Ie applicable to all functions
 • Specific function(s)
 • Ie ALKS, lane change system, auto-park, full automation
 • SAE level
 • Level of reliance on driver
 • Intended use
 • Ie Driver support, driver replacement, ride-sharing
Things to consider

• Systems are heavily software based, often relying on probabilistic methods and object models
 • Nothing is 100% certain
 • “All models are wrong, but some are useful“
• It may be necessary to include requirements for degraded/temporary modes of operation
 • I.e. Temporary loss of lane markings, sensor oversaturation/interference
 • Temporary increase in risk, but may be less than overall risk of transition to driver or attempting minimal risk manoeuvre
• Humans drivers are also susceptible to the above
Possible method

• Begin with general requirements
 • Add more sophistication/complexity in layers
 • Build in some adaptability in the requirements
 • Re-use requirements across different functions

• For each function, level and intended use choose what layer (level of sophistication) is appropriate
 • Layers above could be seen as fallbacks in case of failure & have associated performance degradation/system limitations

• Keep a “database” of requirements and re-use for each function
Partial Example – Highway Chauffeur

- System must (detect/perceive/act):
 - Roadway
 - Lane
 - Lane markings
 - Centre of lane
 - Infrastructure
 - Traffic control devices
 - State of device
 - Road type
 - Road Condition
 - Adverse weather
 - Position of other road users (same lane, adjacent lane, opposite lane)
 - Velocity of other road users
 - Classify type of user
 - Indications of user intent (turn signal, location in lane, acceleration)
 - (Predict) user intended path
 - Keep a safe distance from other users
 - Accelerate/decelerate smoothly
 - Reduce likelihood of crossing intended paths
- Result: Can proceed at rated conditions (speed, lane change etc.)
Partial Example – Highway Chauffeur – (temporary) loss of a sensor

• System must (detect/perceive/act):
 • Roadway
 • Lane
 • Lane markings
 • Centre of lane
 • Infrastructure
 • Traffic control devices
 • State of device
 • Road type
 • Road Condition
 • Adverse weather
 • Position of other road users (same lane, adjacent lane, opposite lane)
 • Velocity of other road users
 • Classify type of user
 • Indications of user intent (turn signal, location in lane, acceleration)
 • (Predict) user intended path
 • Keep a safe distance from other users
 • Accelerate/decelerate smoothly
 • Reduce likelihood of crossing intended paths

• Result: Degraded mode (may need to reduce speed, cannot lane change, increase distances to other users)
Starting point

• Use some of the concepts in published guidance documents as starting point
• Build upon & categorise
• Begin with general statements, add complexity/layers when required for a technology
 • Less complex system requirements can become the degraded modes of more sophisticated systems
• Work towards specific requirements which can be testable
A few possible – “System must” from Canada’s Safety Assessment

1. ADS Level of Automation and intended use
 - Have a defined level of automation
 - Have a clear intended use
 - Be able to identify the software & hardware version

2. Operational Design Domain
 - Have a clearly defined ODD
 - Prevent system from activating if outside ODD
 - Ability to detect if OD outside ODD
 - Minimize risk if ODD exceeded
 - Maintain the safe flow of traffic
 - Comply with the traffic rules
A few possible – “System must” from Canada’s Safety Assessment

3. Object and Event Detection and Response
 - Detect & perceive other road users
 - Respond appropriately to (road infrastructure, other users, traffic control, unlawful users, animals, unclassified objects)

6. Safety Systems
 - Have redundancies
 - Monitor performance
 - Detect faults
 - Conduct hazard analyses
 - Signal malfunctions
 - Execute corrective action
 - Transition to safe fall-back
A few possible – “System must” from Canada’s Safety Assessment

• 7. Human-Machine Interface and Accessibility of Controls
 • Have intuitive controls
 • Communicate critical messages (to occupants and others)
 • Clearly communicate a take-over request
 • Allow sufficient time for a fall-back driver to respond
 • Show when the system is available, not available and operational
 • Signal intention to other road users
A few possible – “System must” from Canada’s Safety Assessment

8. Public Education and Awareness
 • Be clear to the driver when and how it performs DDT or partial DDT
 • Indicate maintenance requirements
 • Make it’s intent clear to other road users

9. User Protections during Collisions or System Failures
 • Achieve a safe state after a collision/failure
 • Communicate with passengers, first responders, emergency services
 • Conduct system tests prior to returning to circulation
A few possible – “System must” from Canada’s Safety Assessment

• 11. System Updates and After-Market Repairs/Modifications
 • Conduct system checks after update/modification/repairs
 • Be disabled if the function is no longer supported