Functional Requirements for Automated Vehicles

Where to start?

Mandate

- Develop functional requirements for AV
 - In particular, combination of different functions (SAE level 2+)
 - Cover requirements for Functional Safety
- In line with following principles:
 - a) System safety
 - b) Failsafe response
 - c) HMI/Operator information
 - d) OEDR

Background Definitions

- Functional Requirements
 - Define the function of a system
 - System must do _____. (mandatory)
 - The "what?"
- Non-Functional requirements
 - Define criteria that can be used to judge the system
 - System shall do _____. (suggestion)
 - The "how?"

Where to start?

- Requirements vary based on a number of factors including:
 - General requirements
 - le applicable to all functions
 - Specific function(s)
 - le ALKS, lane change system, auto-park, full automation
 - SAE level
 - Level of reliance on driver
 - Intended use
 - le Driver support, driver replacement, ride-sharing

Things to consider

- Systems are heavily software based, often relying on probabilistic methods and object models
 - Nothing is 100% certain
 - "All models are wrong, but some are useful"
- It may be necessary to include requirements for degraded/temporary modes of operation
 - le. Temporary loss of lane markings, sensor oversaturation/interference
 - Temporary increase in risk, but may be less than overall risk of transition to driver or attempting minimal risk manoeuvre
- Humans drivers are also susceptible to the above

Possible method

- Begin with general requirements
 - Add more sophistication/complexity in layers
 - Build in some adaptability in the requirements
 - Re-use requirements across different functions
- For each function, level and intended use choose what layer (level of sophistication) is appropriate
 - Layers above could be seen as fallbacks in case of failure & have associated performance degradation/system limitations
- Keep a "database" of requirements and re-use for each function

Partial Example – Highway Chauffeur

- System must (detect/perceive/act):
 - Roadway
 - Lane
 - Lane markings
 - Centre of lane
 - Infrastructure
 - Traffic control devices
 - State of device
 - Road type
 - Road Condition
 - · Adverse weather
 - Position of other road users (same lane, adjacent lane, opposite lane)
 - · Velocity of other road users
 - Classify type of user
 - Indications of user intent (turn signal, location in lane, acceleration)
 - · (Predict) user intended path
 - Keep a safe distance from other users
 - Accelerate/decelerate smoothly
 - · Reduce likelihood of crossing intended paths
- Result: Can proceed at rated conditions (speed, lane change etc.)

Partial Example – Highway Chauffeur – (temporary) loss of a sensor

- System must (detect/perceive/act):
 - Roadway
 - Lane
 - Lane markings
 - Centre of lane
 - Infrastructure
 - Traffic control devices
 - State of device
 - Road type
 - Road Condition
 - Adverse weather
 - Position of other road users (same lane, adjacent lane, opposite lane)
 - · Velocity of other road users
 - Classify type of user
 - Indications of user intent (turn signal, location in lane, acceleration)
 - (Predict) user intended path
 - Keep a safe distance from other users
 - Accelerate/decelerate smoothly
 - Reduce likelihood of crossing intended paths
- Result: Degraded mode (may need to reduce speed, cannot lane change, increase distances to other users)

Starting point

- Use some of the concepts in published guidance documents as starting point
- Build upon & categorise
- Begin with general statements, add complexity/layers when required for a technology
 - Less complex system requirements can become the degraded modes of more sophisticated systems
- Work towards specific requirements which can be testable

- 1. ADS Level of Automation and intended use
 - Have a defined level of automation
 - Have a clear intended use
 - Be able to identify the software & hardware version
- 2.Operational Design Domain
 - Have a clearly defined ODD
 - Prevent system from activating if outside ODD
 - Ability to detect if OD outside ODD
 - Minimize risk if ODD exceeded
 - Maintain the safe flow of traffic
 - Comply with the traffic rules

- 3. Object and Event Detection and Response
 - Detect & perceive other road users
 - Respond appropriately to (road infrastructure, other users, traffic control, unlawful users, animals, unclassified objects)
- 6. Safety Systems
 - Have redundancies
 - Monitor performance
 - Detect faults
 - Conduct hazard analyses
 - Signal malfunctions
 - Execute corrective action
 - Transition to safe fall-back

- 7. Human-Machine Interface and Accessibility of Controls
 - Have intuitive controls
 - Communicate critical messages (to occupants and others)
 - Clearly communicate a take-over request
 - Allow sufficient time for a fall-back driver to respond
 - Show when the system is available, not available and operational
 - Signal intention to other road users

- 8. Public Education and Awareness
 - Be clear to the driver when and how it performs DDT or partial DDT
 - Indicate maintenance requirements
 - Make it's intent clear to other road users
- 9. User Protections during Collisions or System Failures
 - Achieve a safe state after a collision/failure
 - Communicate with passengers, first responders, emergency services
 - Conduct system tests prior to returning to circulation

- 11. System Updates and After-Market Repairs/Modifications
 - Conduct system checks after update/modification/repairs
 - Be disabled if the function is no longer supported