

BMFE-08 Biarritz, France, 4-5 March 2020

PRESENTATION OF AN EXPERIMENTAL STUDY OF A MOTORCOACH TIRE FIRE

STUDIES OF REFERENCE

C Experimental study of tenability during a full-scale motorcoach tire fire

Erik L. Johnsson & Jiann C. Yang (NIST) published in Fire & Materials 2019;43-131-143

and

Motorcoach Tire Fires - Passenger Compartment Penetration, Tenability, Mitigation, and Material Performance

> Erik L. Johnsson & Jiann C. Yang National Institute of Standards and Technology Gaithersburg, MD, USA

- Setup: Original rear of the motorcoach was complemented by a constructed front to recreate a realistic passenger compartment volume, and the interior was partially furnished to provide fuel for fire spread
- □ Scenario:
 - 1. Tire fire due to frictional heating of wheel metal
 - 2. The fire then spreads through a window
 - 3. Ignition of the installed contents
 - 4. Fire growth within the passenger compartment
- Goal: to determine the onset of untenable conditions due to the cumulative effects of heat and toxic gases
- Detailed experimental procedure can be found in the full report

EXPERIMENTAL SETUP

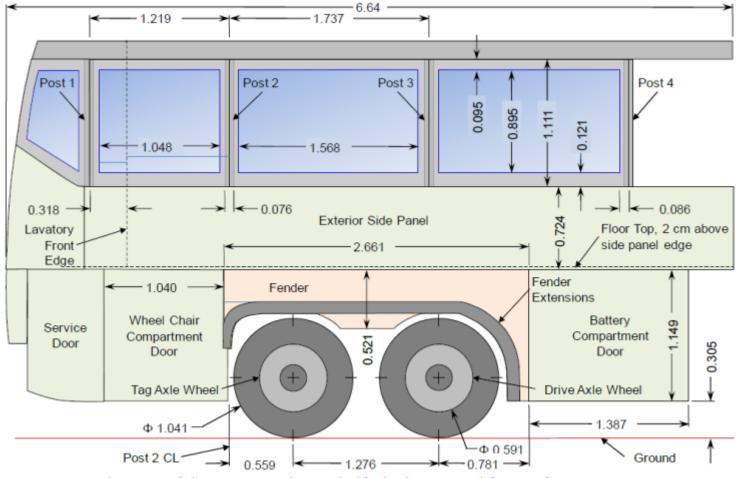
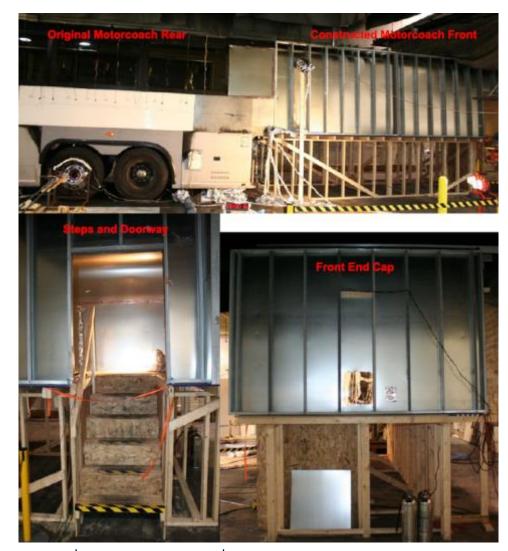


Figure 1 A drawing of the motorcoach rear half which was used for tire fire experiments. Dimensions are in meters. Distance measurement uncertainty is ± 0.3 %.

Efectis

EXPERIMENTAL SETUP: IGNITION SOURCE

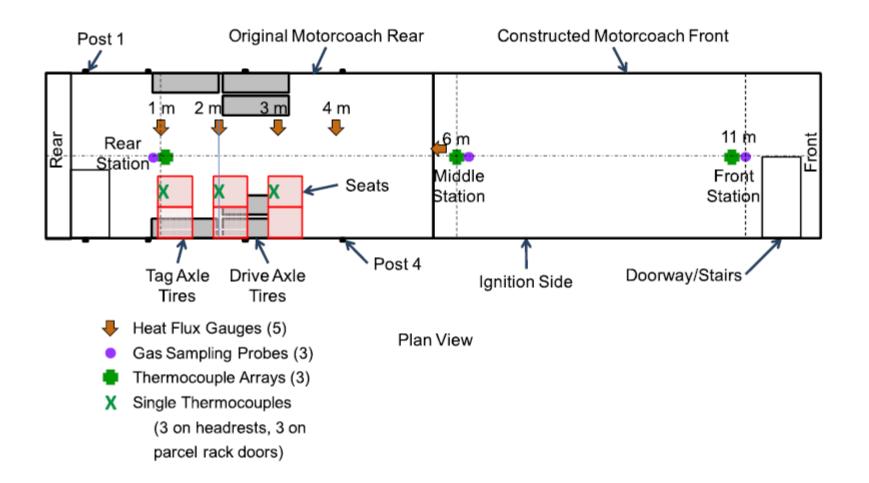

Figure 2 (Left) A photograph showing the burner pre-mixed natural gas and air torches impinging on a tag axle wheel. (Right) A photograph showing the tire shield inside a drive axle wheel rim with an insulating cover to minimize heating from the shield to the tire.

March 2020

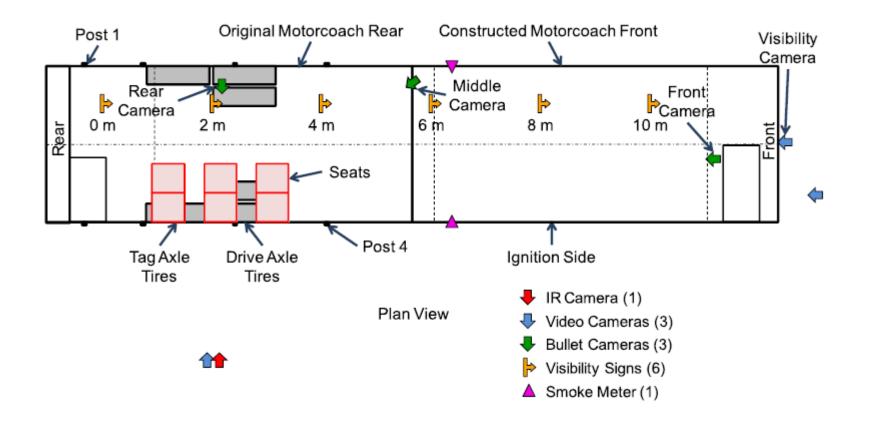
Efectis

EXPERIMENTAL SETUP

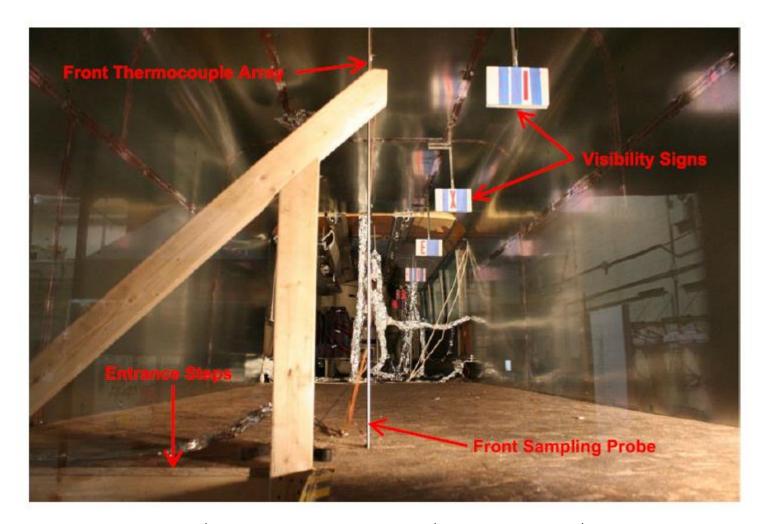
- The constructed front of the motorcoach consisted of a wood frame structure upon which a steel stud frame was built and to which a galvanized sheet steel interior skin was attached
- The doorway matched that of an MCI E-series coach
- Original furnishings and trim components were reinstalled
- □ The components were required to pass the burner test prescribed in FMVSS 302
- The seats were composed of fabric over polyurethane foam


March 2020

Efectis


□ Temperature measurement:

- 3 vertical thermocouple arrays (5 TC each) installed in rear, middle and front locations
- □ Heat flux measurements:
 - 4 HF gauges
- □ Gas volume fractions:
 - CO, CO2, O2 , THC, HCL, HCN
- □ Visibility:
 - smoke meter (laser + detector)
 - camera
- □ Calorimetry:
 - Heat Release Rate



Efectis

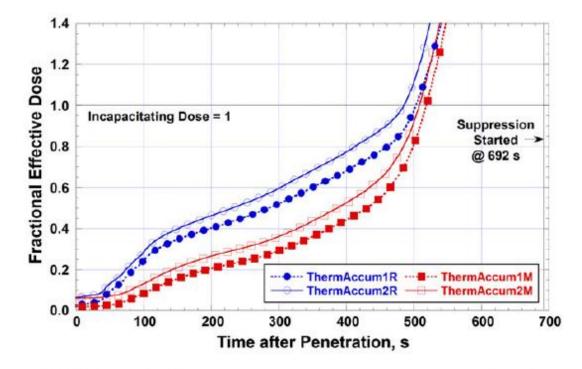
Efectis

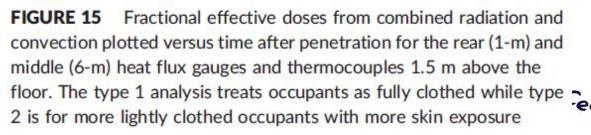
Efectis

Efectis

RESULTS: TIMELINE

(uncertainty	= ±3 s)				
Time, s	Event Description				
-3450	Data recording initiated				
0	Burner placed on wheel				
720	Starting to see smoke from top of tire				
1462	Cameras started				
1800	Started FTIR				
1832	A lot of smoke coming from under the back of the bus				
2111	Small flame at 7 o'clock on the tire				
2201	Tire ignited				
2210	Burner removed				
2232	Shield removed				
2400	Fender ignited				
2648	Glass broke				
2861	Glass fell out and front of fender fell				
2889	Flames in interior				
2998	Seats on fire				
3581	Suppression				
4660	Visible flame in wheel well-suppressed				
1	1				

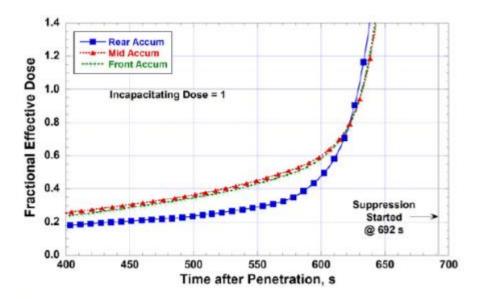

TABLE 2 Timing of events and observations during experiment (uncertainty = ±3 s)

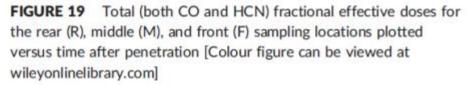

Efectis

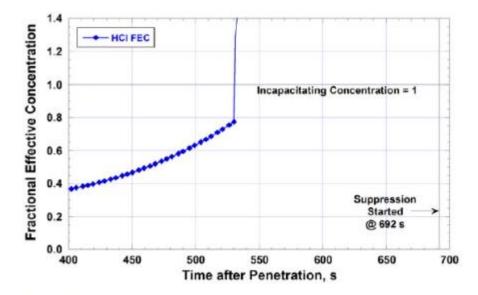
RESULTS: TENABILITY CONDITIONS

Tenability analysis

- □ Thermal = radiative + convective
- □ 2 models: fully clothed or lighly clothed occupants

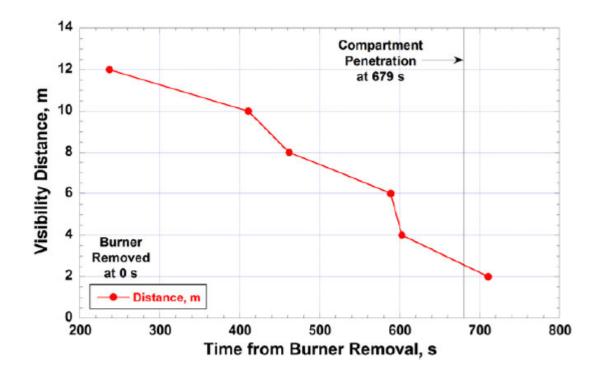


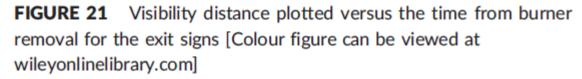

BMFE-08 Biarritz, France


RESULTS: TENABILITY CONDITIONS

Tenability analysis

□ Toxicity models: asphixiants (FED) & irritants (FEC)




FIGURE 20 Fractional effective concentration for HCI measured with Fourier transform infrared spectrometer at the rear sampling location plotted versus time after penetration [Colour figure can be viewed at wileyonlinelibrary.com]

	ire Penetratio	netration to Untenable Conditions					
Location	Rear			Middle		Front	
Hazard	s		min:s	s	min:s	s	min:s
Radiative (heat flux)	511	3	8:31	522	8:42	N/A	N/A
Convective (temperature) fully clothed	641	8	10:41	675	11:15	676	11:16
Convective (temperature) lightly clothed	595	5	9:55	648	10:48	637	10:37
Combined radiative and convective (fully clothed)	503	2	8:23	518	8:38	N/A	N/A
Combined radiative and convective (lightly clothed)	485	1	8:05	508	8:28	N/A	N/A
Carbon monoxide (CO)	637	7	10:37	651	10:51	647	10:47
Hydrogen cyanide (HCN)	649	10	10:49	°649	^a 10:49	°649	^a 10:49
Combined CO and HCN		6	10:29	633	10:33	632	10:32
Hydrogen chloride (HCI)		4	8:51	°531	^a 8:51	°531	^a 8:51
Oxygen vitiation		9	10:42	659	10:59	654	10:54

^aLevels assumed at locations (middle and front) other than where measured (rear).

Efectis

Efectis

CONCLUSIONS

- □ A full-scale experiment with a partially furnished interior was conducted to investigate tire fire growth within the passenger compartment and the onset of untenable conditions
- Temperatures, heat fluxes, gas volume fractions, and visibility were measured and analyzed
- □ Thermal conditions were generally more severe at earlier times than toxic, irritant, or asphyxiant gas conditions
- □ Thermally untenable conditions were reached by about 8 minutes (rear and middle) after fire penetration
- CO and HCN combined to make conditions untenable just under 11 minutes after fire penetration, and HCl caused untenable conditions just under 9 minutes (rear) after fire penetration
- □ Visibility conditions deteriorated significantly prior to fire penetration: Within 30s after penetration, visibility decreased to less than 2 m
- □ The combination of three pairs of seats and partial trim installation was sufficient to cause flashover in the rear in less than 11 minutes after fire penetration
- Recommendations to BFME: If a real scale fire test is conducted, similar instrumentation is needed to evaluate tenability of occupants and time necessary to evacuate a bus
- Possibility to instrument such experiment at Efectis France

