Modifications of Post-Processing from GTR\#15

WLTP-29-05e_Appendix04
add
modify

Post-Processing (ICE, CS)				
Step	actions	GTR15 Amend\#5	EU	JPN
1	raw data	\checkmark	\checkmark	\checkmark
2	phase combined value	\checkmark	\checkmark	\checkmark
2b	drive trace correction for ICE only	NA	\checkmark	NA
3	REESS correction	\checkmark	\checkmark	\checkmark
4a	Ki	\checkmark	\checkmark	\checkmark
4b	phase value correction by Ki	\checkmark	\checkmark	\checkmark
4 c	FE calculation	NA	NA	$\checkmark(\mathrm{km} / \mathrm{L})$
	RI correction for COP	NA	\checkmark	\checkmark
5	regional correction	\checkmark	$\boldsymbol{\sim}$ (ATCT)	NA
	apply DF for pollutants	\checkmark	\checkmark	\checkmark
	check to go to next test or not	\checkmark	\checkmark	\checkmark
6	determine "declared value"	\checkmark	$\boldsymbol{\checkmark}$ (CO2)	$\boldsymbol{\nu}$ (FE)
	convert "declared FE" to CO2	\checkmark	NA	\checkmark
7	adjust phase CO2	\checkmark	$\boldsymbol{\nu}$	\checkmark
8	calculate FC and phase FC	\checkmark	$\boldsymbol{\sim}$ (L/100km)	NA
	convert L/100km to km/L (only for phase value)	\checkmark	NA	\checkmark
9	V_L (\&V_M) post process (1 to 8)	\checkmark	\checkmark	\checkmark
10	calculate $V_{\text {_ind }} \mathrm{CO} 2$ (including phase value)	\checkmark	$\boldsymbol{\sim}$ (CO2)	NA
	calculate V_ind FC (including phase value)	\checkmark	\checkmark (L/100km)	NA
	calculate V_ind FE (including phase value)	\checkmark	NA	$\boldsymbol{\sim}(\mathrm{km} / \mathrm{L})$

exclude

Post-Processing (OVC-HEV CD)				
Step	actions	GTR15 Amend\#5	EU	JPN
1	CD test results	\checkmark	\checkmark	\checkmark
2	\triangle REESS correction	\checkmark	\checkmark	\checkmark
3	calculate \# of CD cycle and R_CDC	\checkmark	\checkmark	\checkmark
4	check \# of CD cycle for V_H, V_L and V_M	\checkmark	\checkmark	\checkmark
5	calculate CD PM and PN	\checkmark	\checkmark	NA
6	calculate average CD pollutants	\checkmark	\checkmark	NA
7	AER_city	\checkmark	\checkmark	NA
8	UF	\checkmark	\checkmark	NA
9	E_AC_weighted, E_AC_CD	\checkmark	\checkmark	NA
10	CO2_CD para. 4.1.2.	\checkmark	\checkmark	add JPN cal
11	FC_CD para. 4.2.2.	\checkmark	\checkmark	NA
	FE_CD para. 4.2.2.	NA	NA	add JPN cal
12	EC_DC_CD_first for COP	NA	\checkmark	\checkmark
13	averaging	\checkmark	\checkmark	\checkmark
	EC_AC_CD, CO2_CD,	\checkmark	\checkmark	NA
	FC_CD (1/100km)	\checkmark	\checkmark	NA
	EC_DC_CD_first for COP	NA	\checkmark	\checkmark
	FE_CD (km/l)	\checkmark	NA	\checkmark
14	determine "declare value"	\checkmark	\checkmark	\checkmark
	EC_AC_CD, CO2_CD	\checkmark	\checkmark	NA
	FE_CD para. 4.2.2.	\checkmark	NA	\checkmark
15	adjust EC_DC_CD_first for COP	NA	add EU ratio	add JPN ratio
16	rounding	\checkmark	\checkmark	\checkmark
17	interpolation	\checkmark	\checkmark	\checkmark
	EC_AC_CD, CO2_CD, EC_AC_weighted, FC_CD (L/100km)	\checkmark	\checkmark	NA
	FE_CD	\checkmark	NA	\checkmark

calculate CD_CO2 without UF
 $\mathrm{M}_{\mathrm{CO}, \mathrm{CD}}=\frac{\sum_{\mathrm{j}=1} \mathrm{M}_{\mathrm{CO} 2, \mathrm{CD}, \mathrm{j}} \times \mathrm{d}_{\mathrm{j}}}{\sum_{\mathrm{j}=1} \mathrm{~d}_{\mathrm{j}}}$

\rightarrow calculate CD_FE considering the transition cycle
$\mathrm{FE}_{\mathrm{CD}}=\frac{\mathrm{R}_{\mathrm{CDA}}}{\sum_{\mathrm{c}=1}^{\mathrm{n}-1} \mathrm{~d}_{\mathrm{c}} \times \frac{1}{\mathrm{FE}_{\mathrm{CD}, \mathrm{c}}}+\mathrm{d}_{\mathrm{n}} \times \frac{\mathrm{k}_{\mathrm{CD}}}{\mathrm{FE}_{\mathrm{CD}, \mathrm{n}}}}$

Post-Processing OVC-HEV CD/CS weighted				
Step	actions	GTR15 Amend\#5	EU	JPN
1	CS and CD test results	\checkmark	$\stackrel{\rightharpoonup}{*}$	\checkmark
	CO2, AER, E, AC,	\checkmark	v	\checkmark
	M, PN, PM, AER_city, R_CDC,,,,,	\checkmark	\checkmark	NA
2	calculate CS/CD weighted	\checkmark	\checkmark	NA
	M, PN, PM	v	v	NA
3	calculate EAER, R_CDA	\checkmark	\checkmark	\checkmark
4	AER for interpolation	\checkmark	\checkmark	\checkmark
5 ,	;averaging AER and determine "declared value"	\checkmark	\checkmark	"declared AER" is not necessary
6	calculate CS/CD weighted	v	v	NA
	CO2, FC (L/100km)	\checkmark	\checkmark	NA
7	calculate EC based on EAER	\checkmark	\checkmark	\checkmark
8	averaging and determine "final value"	\checkmark	\checkmark	v
	adjust phase EC value	NA	NA	\checkmark
	AER_city, CO2, FC (L/100km),	v	v	NA
	EC, EAER	\checkmark	v	\checkmark
9	interpolation	\checkmark	v	\checkmark
	AER_City, CO2, FC (L/100km), EAER	v	v	NA
	EC, AER,	\checkmark	\checkmark	\checkmark

<reference> Required Parameter ($\boldsymbol{\mathcal { V }}$) during type approval testing and Criteria to proceed the additional tests for Level 1B

WLTP-29-05e_Appendix04

		pollutants	Fuel Efficiency (km/L or km/kg)					Electric Consumption (Wh/km)						Range (km)					
		Total	Total	L	M	H	ex-H	Total	L	M	H	ex-H	city	Total	L	M	H	ex-H	city
ICE		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NA												
NOVC-HEV		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NA												
OVCHEV	CD	check by each applicable WLTC cycle	\checkmark	NA	NA	NA	NA	(EC)	\checkmark	\checkmark	\checkmark	NA	NA	EAER	**	**	**	NA	NA
														RCDA	NA	NA	NA	NA	NA
														RCDC**	NA	NA	NA	NA	NA
														AER	NA	NA	NA	NA	NA
	CS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NA												
	Combined	NA																	
PEV		NA	NA	NA	NA	NA	NA	\checkmark	\checkmark	\checkmark	\checkmark	NA	NA	\checkmark	**	**	**	NA	NA
NOVC-FCHV			\checkmark	\checkmark	\checkmark	\checkmark	NA												
OVC- FCHV	CD	NA																	
	CS	NA																	
	Combined	NA																	

criteria to proceed the additional tests
$\boldsymbol{\checkmark}$, red letter : different from EU
** : necessary only for calculation process

