CHEVROLET BOLT BATTERY ELECTRIC VEHICLE (BEV) LOW TEMP EV & BATTERY/CABIN PRE-CONDITIONING RESULT

28th WLTP IWG – 25th September 2019

Bryan Roos – General Motors Lead Engineer - Battery Electric Vehicle Energy & Performance SAE J1634 Draft Leader – SMCT Cycle & DC Discharge Procedure

AGENDA

- Introduction to Test Vehicle
- Low Temp EV Drive Schedule (-7°C)
 - Without Pre-Conditioning
 - With Pre-Conditioning
- Chevrolet Bolt Test Results Comparison of Test Methods
 - Pure Electric Range (PER) Reduction at -7°C
 - Electric Consumption
 - HV Battery Capacity Loss
- Customer Behavior Considerations

Introduction to Test Vehicle

Vehicle: Chevrolet Bolt EV

- Facility: Milford Proving Grounds Emissions Lab (Milford, MI)
- Engineering development vehicle
- Instrumented Controllers
 - Allow more data capture
 - Pre-conditioning programming via calibration change
- 4.4 kW Mobile Vehicle Charger & Energy Measurement Station
 - for vehicle charging and dyno pre-conditioning

Test Objectives

- Quantify electric vehicle range at -7°C ambient and PER ratio
 - with and without pre-conditioning
- Quantify HV Battery Useable Capacity Loss vs. Ambient Temperature

-7°C Ambient: WLTP-STP No Pre-Conditioning

WLTP-STP: No Battery/Cabin Pre-Condition Prior to Test

-7°C Ambient: WLTP-STP With Pre-Conditioning

WLTP STP: With Battery/Cabin Pre-Condition Prior to Test

Comparison of Methods: Pre-Conditioning vs. No Pre-Conditioning

No Pre-Conditioning \rightarrow Up to 4% Test-to-Test Variation

With Battery and Cabin Pre-Conditioning → Less Than 1% Test-to-Test Variation

- Energy measurement prior to WLTP-STP to ensure pre-conditioning energy is captured (if preconditioning is applied)
- It needs to be ensured that battery temperature set point prior to WLTP is repeatable:
 - Variable HV battery temp before WLTP-STP can influence HV battery useable energy (capacity)
 - Starting temp before discharge prep can influence WLTP-STP HV battery test temperatures
 - Time between charge complete and start of WLTP-STP procedure can influence battery temperatures
 - <u>Possible Options</u>:
 - In case of battery pre-conditioning: Allow vehicle to stay plugged in until start of WLTP-STP to ensure a reproducible battery temperature at the start of the test
 - In case of no battery pre-conditioning: defined temperatures to be reached before charging/soaking
- If cabin conditioning is used, defined conditions for the application are required

-7°C Ambient: No Pre-Conditioning vs. Pre-Conditioned Battery + Cabin - Chevrolet Bolt

- Pre-Conditioning the vehicle prior to test had noticeable effects on Range / UBE
- AC Energy consumption was high due to low battery insulation (can improve in future)
 - Ideally near 1:1 tradeoff desired with pre-conditioning: % AC Energy Increase = % Range Increase

-7°C WLTP-STP Comparison	With Battery + Cabin Pre-Conditioning vs. Without Battery or Cabin Conditioning Chevrolet Bolt
% Diff Electric Consumption [AC kWh / 100 km]	12.5% More AC Energy Consumption due to Pre-Conditioning
% Diff Electric Consumption [DC kWh / 100 km]	2.2% Less DC Energy Consumption due to Pre-Conditioning
% Diff PER [km]	6.5% More Range due to Pre-Conditioning
% Diff - Useable Energy [kWh]	4.2% More UBE due to Pre-Conditioning

<u>Battery Pre-Conditioning Time</u>: 4 hours after charge complete (-7°C forced charging temp)

• Ideally this step could occur during charging

<u>Cabin Pre-Conditioning Time</u>: 30 mins prior to WLTP-STP

• Limit time to ~ 1 hr. to avoid excess dyno usage

-7°C Ambient: Battery Capacity and PER Reduction – Chevrolet Bolt

- Pre-Conditioning the vehicle prior to test shows 4% PER ratio change
- Noticeable battery capacity change between -7°C and 25°C depending on if pre-conditioning used
- Pre-Conditioned Battery will still incur capacity loss at -7°C due to increased C-rate from 10% additional roadload, cabin heater and pack heat loss

PER Range Reduction	WLTP-STP	
	Without	With
	Battery and Cabin	Battery and Cabin
	Pre-Condition	Pre-Condition
% PER has reduced at -7°C Compared to 25°C	41%	37%

Battery Capacity Change vs. Pack Temperature	WLTP-STP @ -7°C	
	Without Battery Pre-Conditioning (-7°C Pack Temp)	With Battery Pre-Conditioning
Useable Battery Energy (UBE) Degradation As Compared to 25°C Battery	6.7% Loss	2.8% Loss

-7°C Ambient: Customer Behaviors To Take Into Consideration

Vehicle Remains Plugged Overnight to Charge, Remains Plugged In After Charging:

- Overnight charging event
- HV Battery Does/Does Not Maintain Temperatures well above ambient temperature while plugged in (using AC energy)
- Customer Does/Does Not Request Cabin Warmup prior to driving ("Remote Start")
- Customer Drive Distance: Long vs. Short
 - Long Distance Customer Benefits Most From Pre-Conditioning
 - Short Distance Customer Less Concerned With Range Loss on Full Battery