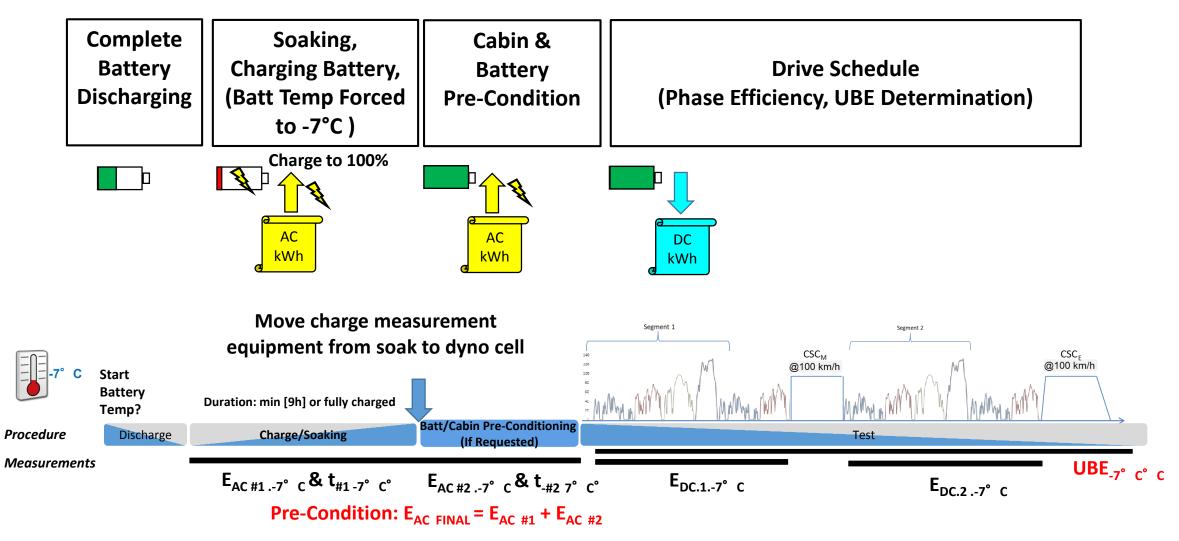
CHEVROLET BOLT BATTERY ELECTRIC VEHICLE (BEV) WLTP FUTURE TEST IMPROVEMENTS TA / LOW TEMP EV

28th WLTP IWG – 25th September 2019

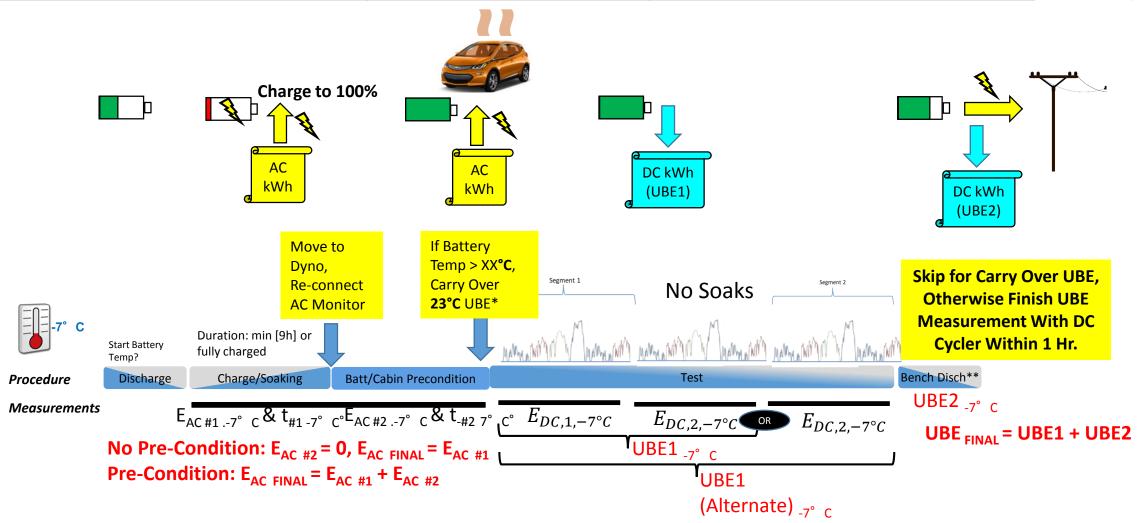
Bryan Roos – General Motors Lead Engineer - Battery Electric Vehicle Energy & Performance SAE J1634 Draft Leader – SMCT Cycle & DC Discharge Procedure

AGENDA


- Benefits of Shorter Test Method For Determination of Range in the Future
- Introduction to This Shorter Test Method for "Long Range" PEVs
- Comparison of Results from Shorter Test Method and WLTP-STP @ -7°C Ambient
 - Electric Range and Useable Battery Energy (UBE)
 - With and Without Pre-Conditioning
- Comparison of Results from Shorter Test Method and WLTP-STP @ 25°C Ambient
 - Electric Range and Useable Battery Energy (UBE)
- % PER Reduction @ -7°C: Comparison of Methods
- Useable Battery Energy (UBE): Comparison of Methods

Why Shorten BEV Testing in the Future for WLTP?

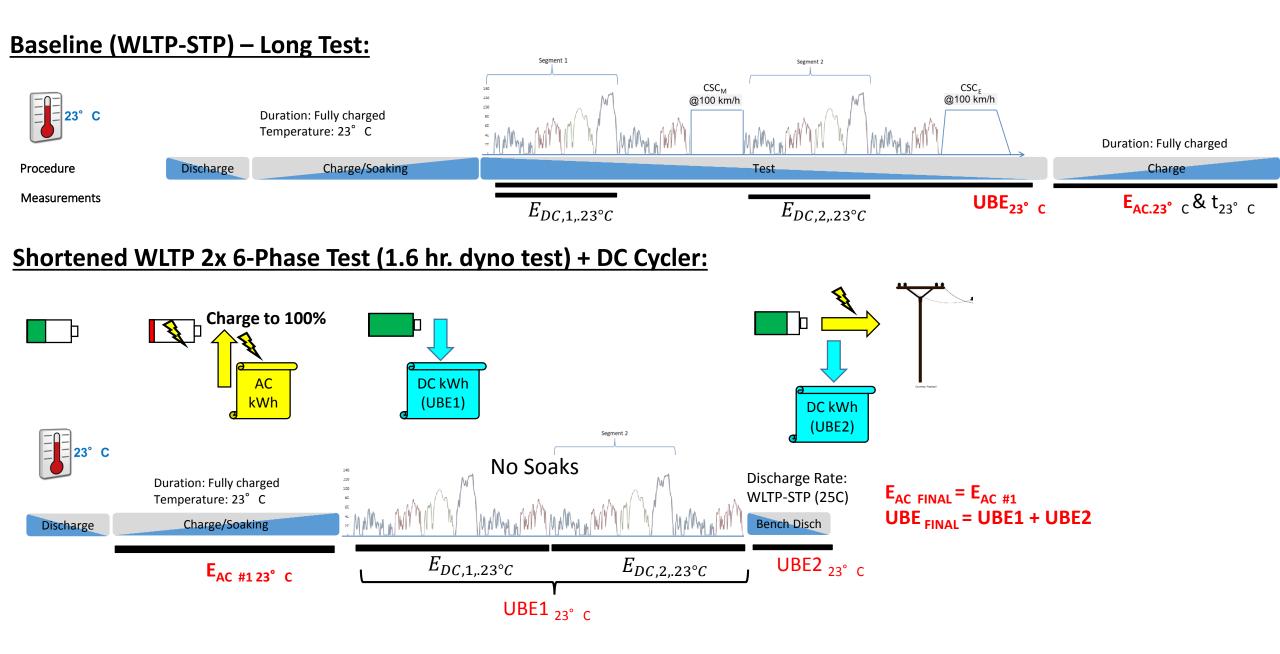
- WLTP-STP first introduced to reduce test time of PEVs (compare to consecutive cycle method)
- BUT:
 - Electric range of PEVs will increase with time
 - Resulting testing time using WLTP-STP will increase significantly with increasing electric range
- Shortened Method in Content of Low Temp:
 - Can be independently applied to Low Temp (at the moment)
 - In future, can be applied in combination with 23°C temperature condition
 - Would allow for identical setup between -7°C and 23°C temperature conditions
- To Avoid Method Equivalency, Implementation of Shorter Method With Threshold Concept:
 - Similar to WLTP-CCP and WLTP-STP thresholds to determine test type to run
 - Based on range of vehicle:
 - Low Range Vehicle → Medium Range Vehicle (Threshold 1): CCP to STP
 - Medium Range Vehicle \rightarrow Long Range Vehicle (Threshold 2): STP to Shortened Method (NEW)
- If there is a WLTP Phase 3 → Discuss Shortened Method for both -7°C and 23°C conditions


-7°C Ambient: WLTP-STP With Pre-Conditioning

WLTP STP: With Battery/Cabin Pre-Condition Prior to Test

-7°C Ambient: WLTP Short Test – Detail View

WLTP Short Test with 6-Phase Only: With or Without Battery/Cabin Pre-Condition Prior to Test (Short Dyno Test)


*Optional: Carry over UBE is recorded from WLTP-STP TA test at 23°C (assuming battery discharge window matches between -7°C and 23°C) **Leverage DC cycler as alternative to record -7°C UBE to save dynamometer time

-7°C Ambient: Comparison of Long vs. Short Test Results - Chevrolet Bolt

	% Difference WLTP Short (6-Phase Only) vs. WLTP-STP	
-7°C WLTP Comparison	No Battery or Cabin Pre-Conditioning Short Test vs. WLTP STP	With Battery + Cabin Pre-Conditioning Short Test vs. WLTP STP
% Diff Electric Consumption	0.2% Less Consumption	0.8% More Consumption
[DC kWh / 100 km]	on Short Method	on Short Method
% Diff PER [km]	0.3% Less Range	1.1% Less Range
Initial Target: < 1% Absolute	on Short Method	on Short Method
% Diff - Time on Dyno [Hour]	60% Less Time	40% - 60% Less Time
Target: ~-50%	on Short Method	on Short Method
% Diff - Useable Energy [kWh] Initial Target: < 1% Absolute DC Cycler Rate: ~9 kW	0.51% Less UBE on Short Method	0.37% Less UBE on Short Method

- No pre-conditioning: Short Test is able to meet < 1% PER criteria vs. WLTP-STP using a shorter drive cycle/DC cycler
- With pre-conditioning: Short Test is slightly over 1% PER criteria
 - Not due to UBE measurement which is below 1% criteria
- With better insulated battery, < 1% PER criteria could be achieved with the pre-conditioning method

23°C Ambient: WLTP-STP and WLTP 2x 6-Phase Correlation

25°C Ambient: Comparison of Long vs. Short Test Results - Chevrolet Bolt

25°C WLTP Comparison	% Difference 2x 6-Phase Only + DC Cycler (Short Test) vs. WLTP-STP (Standard Test)
% Diff Electric Consumption	0.9% Less DC Energy Consumption
[DC kWh / 100 km]	Using Shortened Method
% Diff PER [km]	0.3% Improved Range
Initial Target: < 1% Absolute	Using Shortened Method
% Diff - Time on Dyno [Hour]	68.6% Shorter Test Duration
Target: ~-50%	Using Shortened Method
% Diff - Average Discharge Rate During Test [kW]	0 (Rate 12.5 kW)
% Diff - Useable Energy [kWh] DC Cycler Rate: WLTP-STP Initial Target: < 1% Absolute	0.68% Less UBE Using Shortened Method

- Shorter Test Method is able to meet < 1% PER criteria vs. WLTP-STP using a shorter drive cycle/DC cycler
- DC cycler is capable of meeting < 1% UBE delta to WLTP-STP test

Chevrolet Bolt WLTP PEV Test Summary % PER Reduction @ -7°C

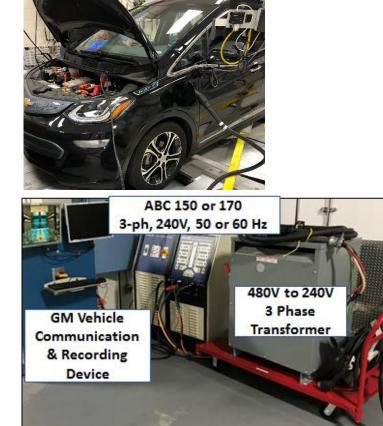
	STP		Short Test (NEW)	
PER Range Reduction	Without	With	Without	With
	Pre-Condition	Pre-Condition	Pre-Condition	Pre-Condition
% PER has reduced at -7°C Compared to 25°C	41%	37%	41%	38%

<u>Result</u>:

- No Pre-Condition: Equivalent range reduction WLTP-STP compared to Shortened Method
- With Pre-Condition: Within 1% range reduction WLTP-STP compared to Shortened Method
- 40 60% less time on dyno to achieve results with short test @ -7°C
- 70% less time on dyno to achieve results with short test @ 25°C

Chevrolet Bolt – Carry Over UBE 25°C vs. -7°C

	WLTP-STP Method (UBE kWh)	Short Cycle + DC Cycler Method (UBE kWh)
25°C UBE	Baseline For This Column WLTP-STP Discharge Rate (12.5 kW)	Baseline For This Column, WLTP-STP Discharge Rate (12.5 kW)
-7°C UBE With Pre-Conditioned Battery	2.8% Loss in UBE	2.8% Loss in UBE WLTP Short Test Discharge Rate, 8.8 kW
-7°C UBE Without Pre-Conditioned Battery	6.7% Loss in UBE	6.6% Loss in UBE WLTP Short Test Discharge Rate, 8.8 kW


- Meets 5% UBE rule from SAE J1634 draft for pre-conditioned battery at or below 20°C.
- Did Not Meet 5% UBE rule from SAE J1634 draft for non pre-conditioned battery at -7°C
- DC Cycler methods show that a full discharge is not needed to achieve final UBE @ -7°C, can piece together from WLTP DC energy and remaining from DC cycler, which saves test time

BACKUP

Short Test Method Equipment for Long Range BEVs

Vehicle: Chevrolet Bolt EV

- Facility: Milford Proving Grounds Emissions Lab (Milford, MI)
- Engineering development vehicle
- Instrumented Controllers
 - Allow more data capture
 - Pre-conditioning programming via calibration change
- Add: 7.4 kW Mobile Vehicle Charger & Energy Measurement Station
 - 25°C tests
- Add: ABC 150 or ABC 170 can be used for discharging HV battery to measure Useable Battery Energy (UBE)*
 - Many different publicly available brands to choose from
- 4.4 kW Mobile Vehicle Charger & Energy Measurement Station
 - for vehicle charging and dyno pre-conditioning (-7°C tests only)

*GM does not endorse a specific hardware set for this procedure

-7°C Ambient: WLTP-STP vs. WLTP Short – Chevrolet Bolt Comparison

	WLTP-STP	WLTP Short + DC Cycler (No Steady State)
Dynamometer Test Duration	3.9 hr.	1.6 - 2.4 hr.
Energy Measurement Equipment	DC Monitor (Driving) AC Monitor (Charging)	DC Monitor (Driving) DC Cycler (Discharging)* AC Monitor (Charging)
Pre-Conditioning Equipment	AC Monitor (Charging)	AC Monitor (Charging)

*Approximate payoff period with dyno session cost savings: 2-4 months

	No Pre-Conditioning	Pre-Conditioning
HV Battery Temperature During Soak	~1°C per hour loss	Stable
Start of Test HV Battery Temperature	Variable	Stable
Range Test Repeatability With Variable Soak Time	Up to 4% Variation	Less Than 1% Variation