

MULTI GAS SENSOR

A REAL TIME TOOL TO MONITOR AND OPTIMIZE ONBOARD AIR QUALITY?

Munich, 05.11.2019, VIAQ-17-11

H.Richard

herve.richard@continental-corporation.com

Tel.: 00 33 5 61 19 50 38 Mob.: 00 33 6 13 51 75 86

Public

1 THE CONCEPT

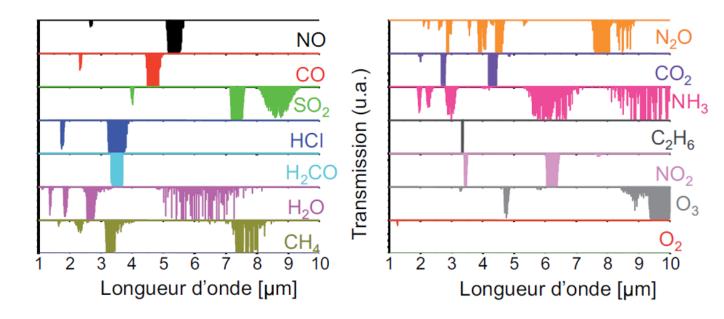
2 THE REASON

3 THE PROJECT

1 THE CONCEPT

2 THE REASON

3 THE PROJECT


THE CONCEPT

Optical spectroscopy

- ✓ molecular absorption spectroscopy based on Beer Lamber law
- √ absorption bands specific to each target species

Mid Infrared range (from 2.5um)

- ✓ relies on molecule "fundamental" vibration
- ✓ exhibits strongest absorption level: X10 to X100 vs
 NIR

- ✓ Multi gas measurement capabilities
- √ Specific measurement

TARGET SPECIFICATION (ANALYTICS)

LLD: Lower Limit of Detection

Gas	Range		Sensitivity (LLD)	Accuracy
CO (ppm)	2	500	2	+-1
CO2 (ppm)	250	15000	250	+-125
NO2 (ppb)	20	400	20	+-10
NO (ppb)	20	800	20	+-10
Formaldéhyde (ppb)	40	500	40	+-20
O3 (ppb)	30	150	30	+-15
H20* (%)	0.1	5	0.1	TBD

^{*:} Absolute concentration

✓ Sensitivity values derived from Health WW recommendation related to long term exposure (1 year)

AQS TARGET SPECIFICATION

Parameter	Number		
Ambiant temperature	-40°C< T amb < +85°C		
Relative Humidity	5%< H rel < 95%		
Voltage	9V < V < 16.5V		
Power	< 1W		
Interface	LIN or CAN		
Dimension	10cmX5cmX5cm		
Response time	< 1s		
Number of operating hours	10 000 H		
Number of measurement	100 000		
Lifespan	10 year		

[✓] Power and response time are correlated to measurement accuracy and sensitivity

1 THE CONCEPT

2 THE REASON

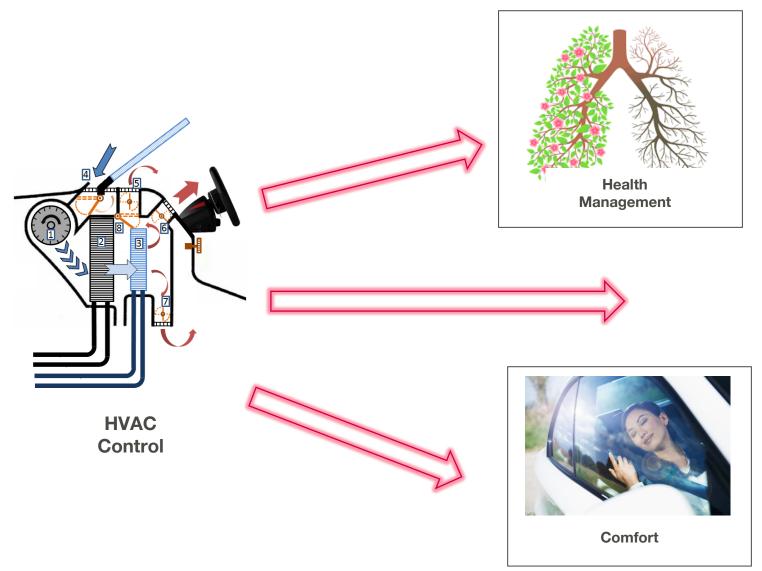
3 THE PROJECT

REASON / MOTIVATION

√ Visible Trend in awareness of cabin-air-quality

- ✓ No reliable device to monitor and compute an AQI "Air Quality Index"
- ✓ Reliability:
 - √ Absolute
 - √ Specific
 - ✓ Sensitive

$$a_{i} = \left(\frac{\text{MAC}_{\text{CO amb}} \times \text{MAC}_{\text{CO w.zone}}}{\text{MAC}_{\text{i amb}} \times \text{MAC}_{\text{i w.zone}}}\right)^{\frac{1}{2}} = \sqrt{\frac{60}{\left(\text{MAC}_{\text{i amb}} \times \text{MAC}_{\text{i w.zone}}\right)}}$$



✓ Opportunity to combine existing sensor (CO2 + Humidity) including extra measurement features (pollutants)

AQS USE CASES

« WHY USING A MULTI GAS SENSOR ?»

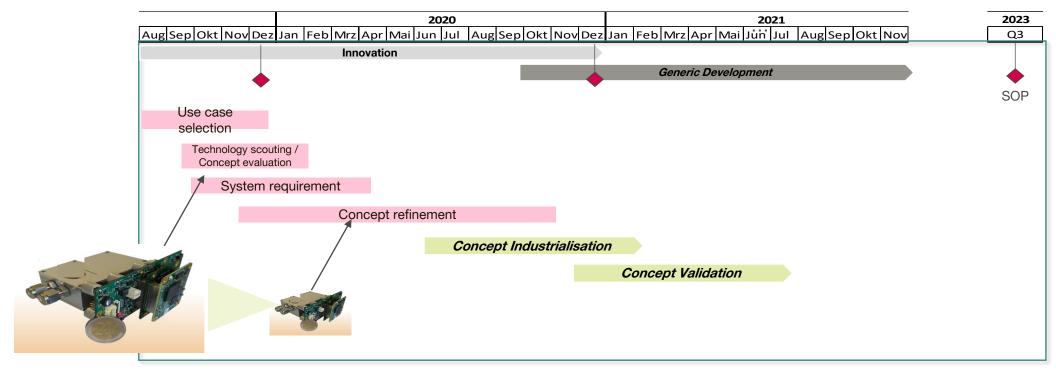
USE CASES: ANALYSIS

« WHY USING A MULTI GAS SENSOR ?»

	Health Management		Comfort		Mobile station
Pollutants	CO2, Humidity	NO2, O3, CO, SO2	CO	Odor detection NH3, O3[,]	CO, NO2, O3, SO2
Benefit	Energy saving Exposure limitation	Energy saving Exposure limitation	Comfort Rule enforcement	Comfort	Public health Revenue for CaaS
System impact	Recirculation flap	Recirculation flap Air purifier, Ioniser	Recirculation flap	Perfume dispenser	Connectivity

Caas: Container as a service

KEY QUESTION: IS IT WORTH FITTING CAR WITH A SOPHISTICATED MONITORING TOOL?


1 THE CONCEPT

2 THE REASON

3 THE PROJECT

DEVELOPMENT SCHEDULE

Available gases: N0, N02, C0, C02, NH3, Formadelhylde, Humidity SOP: Start Of Production

1 THE CONCEPT

2 THE REASON

3 THE PROJECT

CONNEXION WITH « STAGE 4 »

« Monitoring of indoor Air Quality »

Proof of concept (15X10X10 cm3) devices available for in-situ / real time measurement

Key questions « sensor relevant » to be adressed:

- > Which acheivable trade-off: « fuel economy vs harmfull substances exposure? »
- > Do active purification system request a close loop control on pollutants?
- > Is proposed sensor specification sufficient to adress envisioned use cases?
- > Which upcoming regulations or rules?

LET'S DISCUSS!