Brake wear particle emissions of a passenger car measured on a chassis dynamometer

Marcel Mathissen¹, Ferdinand Farwick zum Hagen¹, Rainer Vogt¹ Theodoros Grigoratos², Tero Lahde²

¹Ford Research & Advanced Engineering, Europe ² European Commission, Joint Research Centre

Agenda

- Vehicle measurement procedure
- Chassis Dynamometer measurements

• Grant agreement no. 636592 www.lowbrasys.eu

VEHICLE BASED BRAKE PARTICLE MEASUREMENT APPROACH - STATE OF THE ART

Traditionally: Sampling inlet near particle source

Issues:

- Low Signal-to-Noise ratio.
- Contamination from other sources.
- Quantification difficult.

NEW MEASUREMENT APPROACH

- Semi-enclosed brake housing.
 Design optimized with CFD simulations.
- Constant volume flow approach
- Conserving natural air flow direction.
- Captures wheel induced particle losses
- Very good signal-to-noise ratio but artificially increased brake temperatures due to housing

VEHICLE MEASUREMENT APPROACH - CONSTANT VOLUME SAMPLING?

- Setup flow is vehicle velocity dependent
- Decreasing flow rate with increasing speed
- More powerful blower needed to achieve CVS but power restrictions in the vehicle.

VEHICLE MEASUREMENT APPROACH - CHARACTERIZATION WITH TRACER GAS

- In-depth tracer gas characterization campaign for measurement approach:
 - Aspiration efficiency of 93 % for 3h-LACT
 - Low contribution from particle sources near tire/road (<8% and no influence above 30 km/h)

LOWBRASYS BRAKE CYCLE

- 3h-Los Angeles City Traffic (3h-LACT)
- Developed as a first step towards a commonly accepted test procedure in Lowbrasys.
- 217 stops, decelerations up to 0.3 g
- A 20 minutes subset was used for vehicle repeatability measurements (LACT-20).

Mathissen & Evans, (2019), "Lowbrasys brake wear cycle - 3h LACT", Mendeley Data

CHASSIS DYNO SETUP

- Extended particle instrumentation with focus on ultrafine particle emissions.
- Applied on-road estimated correction factors for aspiration efficiency. Airflow differs at chassis dynamometer. Influence expected to be small.

CHASSIS DYNO TEMPERATURES

- Vehicle measurement procedure leads to artificial increase of brake disc temperatures.
- Temp. controlled dynamometer testing was performed at higher temperatures than what is observed on a vehicle in the field.
- Brake disc temperatures need to match the temperature level of a vehicle in the field to avoid any bias on the measurements.

CHASSIS DYNAMOMETER MEASUREMENTS

- In excess of realistic temperature, PN emission factors of more than 7·10¹² #/km were found (LACT-20).
- The vast majority of PN was found to be volatiles. Sampling through a catalytic stripper resulted in 4·10⁹ #/km solid particles.
- High measurement variability without removal of volatile particles

PYRAMID CYCLE - BRAKE DRAG EMISSIONS

- Pyramid cycle: No brakes applied during cycle at any time.
- Resuspension of particles as root cause is excluded.
- Brake Drag related particle emissions are found both on vehicle and brake dyno level
- App. 25% 40% of the PM₁₀ emissions during 3h-LACT are allocated to "off-braking" emissions

SUMMARY

- A new vehicle-based measurement approach was developed for measuring brake wear particle emissions. Method is a substantial improvement compared to state-of-the approaches art but still associated with high uncertainties.
- Semi-enclosed wheel effectively reduces contamination from other sources and captures wheel-induced particle losses but leads to increased brake temperatures due to reduced brake cooling.
- Particle emissions were investigated on the chassis dynamometer:
 - Vast majority of PN emissions were found to be volatiles.
 - Sampling through a catalytic stripper resulted in 4·10⁹ #/km solid particles.
 - High measurement variability without removal of volatile particles.
 - Brake Drag related particle emissions are found both on vehicle and brake dyno level.

