2nd Meeting of GRBP Task Force on Measurement Uncertainties

Tyre noise uncertainties in UN Regulation No. 117
List of topics

- Track to track noise variability: ISO WG11 vs VDA study results

- Tyre noise uncertainty table (Reg.117)

- Proposals for VDA formula validation
Track to Track noise variability: VDA Round robin test

Test performed at 80 km/h (no regression), Track S09 and S012 removed since not compliant with ISO10844 requirements, Slick tyre (R02) not taken into consideration.

\[
U = 2 \times \sqrt{\frac{1}{T} \sum_{t=1}^{T} \sigma_t^2}
\]

\[\sigma = \text{standard deviation}\]
\[t = \text{tyre number}\]

Max PtoP = 3.1 dB

Uncertainty = ± 1.8 dB (95% confidence interval)
Track to Track noise variability: ISO WG11 Round robin test

Five different tyres tested in four different Tracks (Compliant with ISO 10844)
Both summer and winter tyres are included in the analysis (16” and 18”)

Max PtoP= 2.4 dB

Uncertainty= ± 1.6 dB (95% confidence interval)

ISO WG11 results are in line with VDA results

U = 2 \sqrt{\frac{1}{T} \sum_{t=1}^{T} \sigma_t^2}

\sigma = standard deviation

t = tyre number

Includes measurement system uncertainty
Tyre noise uncertainty table

Uncertainty assessment process:

- Uncertainty sources identification for R117 test

- Estimation of uncertainty values:
 - by literature review
 - through sharing experience among tyre manufacturers

- Conclusions:
 - Estimation of total uncertainty in Reg.117
 - Identification of main contributors to total uncertainty
 - Impact of measurement uncertainty on declared results (Reg.117)
Tyre noise uncertainty table Reg.117
Summary of tyre manufacturers experience

<table>
<thead>
<tr>
<th>Uncertainty categories</th>
<th>Systematic or Random</th>
<th>Standard Uncertainty [dB] 95% confidence interval</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Test Repeatability (day by day)</td>
<td>Random</td>
<td>± 0.6 (^{(b)})</td>
<td>Result variability once tyres, track, acquisition system, vehicle and modus operandi are the same (Day and driver might be different)</td>
</tr>
<tr>
<td>1.1 Test Repeatability (run to run)</td>
<td>Random</td>
<td>± 0.3 (^{(b)})</td>
<td>Result variability for consecutive test once tyres, track, acquisition system, vehicle and modus operandi are the same</td>
</tr>
<tr>
<td>1.2 Track Humidity</td>
<td>Random</td>
<td>Unknown</td>
<td>Definition of “dry” is quite vague. Humidity may affect more R51 Drive-by than R117</td>
</tr>
<tr>
<td>1.3 Speed effect</td>
<td>Random</td>
<td>± 0.13</td>
<td>Minimum requirement for sensor accuracy in R117 is ±0.2 dB/km/h. PtoP = 0.2 dB* 2km/h = 0.4 dB (± 0.13)</td>
</tr>
<tr>
<td>1.4 Temperature influence (after temperature correction)</td>
<td>Random</td>
<td>± 0.3 (^{(b)})</td>
<td>Despite temperature correction a residual error remains (Formula not fully correct). Only applicable for C1/C2 tyres</td>
</tr>
<tr>
<td>2 Temperature influence (without temperature correction)</td>
<td>Systematic</td>
<td>± 0.6</td>
<td>The systematic error is removed in Reg.117 (except for C3) but not in Reg.51. Reg. 117 allows following temperature ranges: air >5, <40 surface temperature >5, <50. Estimated peak to peak by Reg.117 formula = 1.8 dB (± 0.6 dB)</td>
</tr>
<tr>
<td>3 Track to Track</td>
<td>Systematic</td>
<td>± 1.8 (^{(a)})</td>
<td>Estimated by VDA round robin test results</td>
</tr>
<tr>
<td>4 Tyre to tyre</td>
<td>Random</td>
<td>± 0.5 (^{(b)})</td>
<td>Uncertainty due to production variability (Different plants, different period….). Excluding ageing effect</td>
</tr>
<tr>
<td>5 Sound meter-to sound meter</td>
<td>Random</td>
<td>± 0.4 (^{(a)})</td>
<td>Measurement system shall meet class 1 requirements</td>
</tr>
<tr>
<td>6 Vehicle influence</td>
<td>Systematic / Random</td>
<td>± 1.0 (^{(b)})</td>
<td>Possibility to use different vehicles. Uncertainty takes into consideration differences on: Wheel adjustment. Suspension, Tyre load and inflation, Body-road clearance, shadowing and reflecting properties, Rim, Transmission noise, Bearings, Brake noise (brakes not completely released). Body shape - aerodynamic noise around the vehicle body and extra equipment</td>
</tr>
</tbody>
</table>

Combined standard uncertainty

Total Uncertainty C1/C2 tyres

\[U = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 + u_6^2} \]
\[\pm 2.2 \text{ dB} \]

Total Uncertainty C3 tyres

\[U = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 + u_6^2} \]
\[\pm 2.3 \text{ dB} \]

\(^{(a)}\) Values retrieved in literature
\(^{(b)}\) Estimation based on experience of some ETRTO members
Tyre noise uncertainty table Reg.117: main contributors

Estimated Uncertainty (95% confidence interval)

<table>
<thead>
<tr>
<th></th>
<th>C1/C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>± 2.2 dB</td>
<td>± 2.3 dB</td>
</tr>
<tr>
<td>Total</td>
<td>± 1.3 dB</td>
<td>± 1.5 dB</td>
</tr>
<tr>
<td></td>
<td>excluding track influence</td>
<td>excluding track influence</td>
</tr>
<tr>
<td></td>
<td>± 0.9 dB</td>
<td>± 1.1 dB</td>
</tr>
<tr>
<td></td>
<td>excluding track and vehicle influence</td>
<td>excluding track and vehicle influence</td>
</tr>
</tbody>
</table>

- **Track** is the highest contributor to total uncertainty followed by **vehicle** influence.
- C1/C2 uncertainty lower than C3 because of temperature correction.
Impact of measurement uncertainty on declared results (Reg.117)

Example:
Measured Noise Level = 75.2 dB
Declared Noise Level = 74 dB (Allowance = -1 dB (COP) + Rounding down)

Combined Uncertainty for C1/C2 = 2σ = ±2.2 dB
Limit for risk calculation = 75.99 dB
Assuming a normal distribution around the measured value,

The Risk/Prob. that new test will exceed the declared value is ≈ 23.63%

In general the Risk/Prob. that a new test will exceed declared value is within 18% - 50%

Risk is relatively high and it should be reduced and ETRTO is mainly focused on reducing measurement uncertainty

Risk depends on decimal digit of measured value: Risk increases with decimal digit number

Estimated uncertainty in Reg.117 measurement

2σ = 2.2 dB
Proposals for VDA formula validation

- Track alignment based on surface characteristics (VDA formula) seems a promising approach but formula must be validated on a new pool of data different from that one used for formula fitting.
- Furthermore, formula validity must be extended to different tyre categories and speeds.

\[
L_{P,\text{cruise}50} = 60.3 + 27.7 \cdot MPD^{1.5} - 126 \cdot (g \cdot MPD)^{4.3} - 36 \cdot \alpha^{0.9} \text{ dB(A)}
\]

Main concerns
One single formula might be not enough because it depends on:
- Test speed
- Tyre categories and tyre size (XL, 3PMSF, Special, C2, C3, Traction, FRT)

Proposal from ETRTO

Using existing VDA data

- Check how the formula works for each tyre tested in VDA study, not only in average;
- Check if formula at 50 km/h works for 80 km/h data: if not, establish a formula for 80 km/h (to be done by BBM Müller)
- Repeat formula fitting by using a reduced set of tracks data therefore validate it on the remain part
Appendix
References

Track to track uncertainty
Round-Robin Test pass-by noise tracks- Europe- Final report 21th March 2017 (VDA)

Sound level meter uncertainty

Vehicle Uncertainty
EU project-SILENCE "Possibilities to Replace Outdoor Coast-by Tyre/Road Noise Measurements with Laboratory Drum Measurements" pag.22