Submitted by Industry **Specification of thresholds for the deceleration demand of an ALKS**

What is an Emergency Manoeuvre?

Once the deceleration exceeds a certain threshold, this maneuver should be considered an Emergency Manoeuvre, requiring indication to the driver.

What is a suitable threshold value for a distinction between a comfort and an Emergency Manoeuvre?

Industry proposes **5m/s²** as the threshold value for the deceleration demand, above which a maneuver has to be considered an Emergency Maneuver due to a risk of an imminent collision.

Justification:

- 5m/s² deceleration demand are used in UN-R152 (AEBS M1/N1) as a threshold for Emergency Braking
- At low speeds ISO 15622 (ACC) specifies average decelerations up to 5m/s² as the cruise control operating range
 = comfort operation
- **6m/s²** is the threshold value for **activation of the Emergency Stop signal** according to UN-R13H.
- Road adhesion can be expected to allow at least 5m/s² deceleration, so a maneuver requirering less than that will most likely be successfully handled by the system.

Specification of thresholds for the deceleration demand of an ALKS

Limiting the max. allowed deceleration in certain scenarios

Current draft proposal:

Limit the allowed deceleration to [3,7/4/5] m/s² for some types of scenarios when

- a) there is an uncritical cut-in scenario in front
- b) the ALKS approaches an unobstructed stationary obstacle (vehicle, road user or blocked lane of travel)

What is the problem?

- Never exceeding a limited deceleration cannot be ensured for ALL types and scenarios of stationary obstacle, the parameters would need to be very strictly defined
 - > e.g. lying motorcyclist compared to a standing pedestrian,
 - > small pylones starting a workzone where relevant signalling is missing compared to a fully blocked lane
- During the transition phase or during an MRM these arbitrary limits might no longer be possible to meet, e.g. when a sensor is already affected by inclement wheather causing a transition demand. While collision avoidance will still be ensured, detection capabilities might be degraded, delaying the system reaction.
- > The system needs the freedom to react to unforseen situations without any restrictions in order to ensure safety.

Conclusion:

Don't limit the deceleration applied by the system, because not causing unnessary harsh braking is part of the safety strategie of the system anyhow, and is assessed according to Annex CEL.