Comments on Informal Document - ACSF-25-23 submitted by Canada

DRAFT UN Regulation No. [X]

Uniform provisions concerning the approval of vehicles with regard to automated lane keeping system

Note:

- Green highlight text: incorporating the proposals in ACSF-24-18 (UK/DE/Industry)

 Blue highlight text: incorporating (some parts of) the additional changes proposed by UK/EC after the IWG, and some additional text/modifications based on the IWG discussion (with some editorial changes (reference no. etc.) and notes)
- **<u>Bold & underlined text</u>**: incorporating the EC text from ACSF-24-08

Contents

Regulation	
	Introduction
1.	Scope and purpose
2.	Definitions
3.	Application for approval
4.	Approval
5.	System Safety and Fail-safe Response
6.	Human Machine Interface / Operator Information
7.	Object Event Detection and Response
8.	Data Storage for Automated Systems
9.	Cybersecurity and Software-Updates
10.	Modification of vehicle type and extension of approval
11.	Conformity of production
12.	Penalties for non-conformity of production
13.	Production definitively discontinued
14.	Names and addresses of Technical Services responsible for conducting approval tests and of Type Approval Authorities
Annexes	
1	Communication-and system information data
2	Arrangements of approval marks
3	System information data
4	Special requirements to be applied to the safety aspects of electronic control systems [and Audit]
5	Tests

Introduction

The intention of the Regulation is $\ldots\ldots$

1. Scope and purpose

1.1. This Regulation applies to vehicles of categories M_1 .

2. Definitions¹

For the purposes of this Regulation:

2.1. "Automated Lane Keeping System (ALKS)" for low speed application is a system which is activated by the driver and which keeps the vehicle within its lane at the for travelling speeds of 60 km/h or belowless by influenecontrolling the lateral movement of the vehicle and controls the and longitudinal movements of the vehicle for extended periods without the need for further driver-inputcommand.

Within this Regulation ALKS is also referred to as "the system".

Sy2.1.bis "Vehicle Type with Regard Automated Lane Keeping System (ALKS)"

means a category of vehicles which do not differ in such essential aspects
as:

(a) Vehicle features which significantly influence the performances of the Automated Lane Keeping System (ALKS);

(b) The type and design of the Automated Lane Keeping System (ALKS).

(c) manufacturers designation of vehicle type

Kommentiert [JR1]: Wording is a bit unclear

- 2.2. "Transition demand" is a logical and intuitive procedure to transfer the dynamic driving task from automated control by the system (automated control) to a human driver (manual control) control. This request is given from the system to the human driver indicates the transition phase.
- 2.3. "Transition phase" means the duration of the transition demand.
- 2.4. "Planned [transition] event" is a situation which is known in advance, e.g. at the time of activation such as a journey point (e.g. exit of a highway) etc. and which requires a transition demand.
- 2.5. "Unplanned [transition] event" is a situation which is unknown in advance, but assumed as very likely in to happenhappening, e.g. [road construction, inclement weather, approaching emergency vehicle, missing lane marking, load falling from truck (collision)] and which requires a transition demand.
- 2.6. "Imminent collision risk" describes a situation or an event which leads to a collision of the vehicle with another road user or an obstacle which cannot be avoided by a normal-braking demand with lower than [3.7 5 m/s2] unless an emergency manoeuvre is executed.

Kommentiert [JR2]: An unplanned event may not need a transition. It may be more precise to use planned/unplanned transition event as both are defined as requiring a transition.

Kommentiert [JR3R2]: I added [transition] in the text where either definition was used

Kommentiert [JR4]: Here we ignore the possibility of a steering manoeuvre as means of avoidance?

Remark: Objection from Japan with regard to 5 m/s2, Japan would like to keep 3,7 m/s2

¹ Definitions have only been reviewed in parts in the last meeting.

- 2.7. "Minimum risk manoeuvre" means a procedure aimed at minimising risks in traffic, which is automatically performed by the system after a transition demand without driver response or in the case of a severe system failure.
- 2.8. "Emergency Manoeuvre" is a manoeuvre performed by the system in case of an event in which the vehicle is at imminent collision risk with the purpose of avoiding or mitigating a collision.
- 2.9. Speed
- 2.9.1. "Specified maximum speed" is the speed declared by the manufacturer up to which the system operates under optimum conditions. The system speed cannot exceed the specified maximum speed and it shall have a maximum value of 60km/h
- 2.9.2. "Maximum operational speed" is the speed selected by the system up to which the system operates under current environmental and sensor conditions. It is the maximum vehicle speed at which the system may be active and shall be determined by the capability of the sensing system as well as the environmental conditions.
- 2.9.3. "Present speed" or "speed" is the current speed selected by the system taking into account the maximum operational speed and the surroundingdue to traffic.
- 2.10. "Detection range" of the sensing system is the distance at which the system can reliably recognise a target and generate a control signal, taking account of the deterioration of components of the sensing system due to time and usage throughout the lifetime of the vehicle and generate a control signal.
- 2.11. Failures
- 2.11.1. An "ALKS failure" is any single failure specific to the operation of the ALKS (e.g. single sensor failure, loss of necessary calculation data for the driving path of the vehicle).
- 2.11.2. *"Failure mode"* is the operation status of the system in which the system operates with an ALKS failure.
- 2.11.3. A "severe ALKS failure" is a failure specific to the operation of the ALKS that affects the safe operation of the system when in failure mode with—an acceptable occurrence a very low probability of occurrence such as generally used for essential components as e.g. an electronic control unit.—Single sensor failures are only considered as such when accompanied by another influence affecting the safe operation of the system.
- 2.11.4. A "severe vehicle failure" is any failure of the vehicle (e.g. electrical, mechanical) that affects the ability of the ALKS to perform the dynamic driving task and would also leave the manually driven vehicle in a state unfit to drive affect the manual operation of the vehicle (e.g. loss of power supply, failure of the braking system, sudden loss of tire pressure).

Kommentiert [JR5]: This is not used in the regulation

- 2.12. "Self-check" means an integrated function which checks for any system failure and for a change in the detection range of the sensing system on a continuous
- 2.13. A "system override" by the driver means a situation when the driver provides an input to a control which has priority over the longitudinal or lateral control of the system, while the system is still active.

[This definition might need revision once paragraph 2.4.8 is finalized.]

- 2.14. "Dynamic Driving task" is the control and execution of all longitudinal and lateral movements of the vehicle.
- 2.15. "Data Storage System for Automated Driving (DSSAD)" enables the determination of interactions between the ALKS and the human driver.²
- 2.16. "Lifetime of the system" is the period of time during which the ALKS system is available, as a function, on the vehicle.

3. Application for approval

- 3.1. The application for approval of a vehicle type with regard to the ALKS shall be submitted by the vehicle manufacturer or by his authorized representative.
- 3.2. It shall be accompanied by the documents mentioned below in triplicate:
- 3.2.1. A description of the vehicle type with regard to the items mentioned in paragraph 2.1.bis., together with a documentation package which gives access to the basic design of the ALKS and the means by which it is linked to other vehicle systems or by which it directly controls output variables.

 The numbers and/or symbols identifying the vehicle type shall be specified.
- 3.3. A vehicle representative of the vehicle type to be approved shall be submitted to the Technical Service conducting the approval tests.

4. Approval

- 4.1. If the vehicle type submitted for approval pursuant to this Regulation meets the requirements of paragraph 5. below, approval of that vehicle shall be granted.
- 4.2. An approval number shall be assigned to each type approved; its first two digits (at present 00 corresponding to the 00 series of amendments) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party shall not assign the same number to another vehicle type.
- 4.3. Notice of approval or of refusal or withdrawal of approval pursuant to this Regulation shall be communicated to the Parties to the Agreement which apply this Regulation by means of a form conforming to the model

² To be revised in accordance with IWG EDR/DSSAD.

- in Annex 1 and documentation supplied by the applicant being in a format not exceeding A4 (210 x 297 mm), or folded to that format, and on an appropriate scale or electronic format.
- 4.4. There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation, an international approval mark conforming to the model described in Annex 2, consisting of:
- 4.4.1. A circle surrounding the letter "E" followed by the distinguishing number of the country which has granted approval;²
- 4.4.2. The number of this Regulation, followed by the letter "R", a dash and the approval number to the right of the circle prescribed in paragraph 4.4.1. above.
- 4.5. If the vehicle conforms to a vehicle type approved under one or more other Regulations, annexed to the Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in paragraph 4.4.1. above need not be repeated; in such a case, the Regulation and approval numbers and the additional symbols shall be placed in vertical columns to the right of the symbol prescribed in paragraph 4.4.1. above.
- 4.6. The approval mark shall be clearly legible and be indelible.
- 4.7. The approval mark shall be placed close to or on the vehicle data plate.

5. System Safety and Fail-safe Response

5.1. General Requirements

5.1.1. The activated system shall eope with perform the all dynamic driving tasks, and manage all situations including failures, and shall not endanger the safety of the vehicle occupants or any and all other road users.

The activated system shall not cause any collisions that are reasonably foreseeable and preventable. If a collision can be safely avoided without causing another one, it shall be avoided. When the vehicle is involved in a adetectable collision is not avoidable, the vehicle shall be brought to a standstill upon the collision.

5.1.2. The activated system shall comply with traffic rules relating to the dynamic driving task in the country of operation. and as appropriate in the current situation.

The distinguishing numbers of the Contracting Parties to the 1958 Agreement are reproduced in Annex 3 to the Consolidated Resolution on the Construction of Vehicles (R.E.3), document ECE/TRANS/WP.29/78/Rev. 3 -

www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29resolutions.html

5.1.3. The system shall have the capability to detect [and store] failures affecting the safe operation or the functionality of the ALKS and implement safe strategies until the detection is completed.

The occurrence of a severe ALKS failure is deemed acceptable if it is comparable to similar failures in other well-established and well-trusted safety systems (e.g. braking or steering systems).

[Note — discussion on storage of failures and also on deleting this sub-paragraph on 18/11/2019]

- 5.1.3. The activated system shall exercise control over systems required to support the driver in resuming manual control at any time (e.g. demist, windscreen wipers and lights), activating and deactivating as conditions require to support the driver resuming control at any time. maximize driver controllability (e.g. wipers on in case of frain, headlamps on in case of darkness) in the way of safety due to the fact that system and driver have not the same needs to assure a safe driving.
- 5.1.4. When required, the activated system shall issue a\(\triangle \) transition demand with sufficient lead time and shall not endanger the safety of the vehicle occupants or other road users. If determined necessary by the activated system, it shall issue a transition demand with sufficient lead time and not endanger the safety of vehicle occupants and all other road users.

Types of situations in which the vehicle will generate a transition demand to the driver shall be declared by the vehicle manufacturer and included in the documentation package required in Annex [Y] [CEL].

- 5.1.5 If the driver fails to resume control of the dynamic driving task during the transition phase, the system shall perform a minimum risk manoeuvre. During a minimum risk manoeuvre, the system shall minimise risks to safety of the vehicle occupants and other road users.
- 5.1.6. The system shall [continuously] perform self-checks to detect the occurrence of faults failures and to confirm system performance at all times (e.g. after vehicle start the system has at least once detected an object at the same or a higher distance than that declared as detection range according to paragraph 7.1.).
- 5.1.7. The effectiveness of the system shall not be adversely affected by magnetic or electrical fields. This shall be demonstrated by compliance with Regulation No. 10, 05 or later Series of amendments to the Regulation.
- 5.1.8 The manufacturer shall take measures to guard against reasonably foreseeable misuse by the driver and tampering of the system.
- 5.1.9. The system shall meet the requirements of this regulation throughout its lifetime, including continued compliance with applicable traffic rules.
 When the system can no longer meet the requirements of this regulation,

it shall not be possible to activate the system.

The manufacturer shall declare and implement a process to manage the safety and continued compliance of the ALKS system over lifetime. The process and any measures implemented shall be demonstrated to the satisfaction of the Technical Service as part of the Annex [CEL] assessment.

- 5.2. Dynamic driving task
- 5.2.1. The activated system shall keep the vehicle inside its lane of travel and ensure that the vehicle does not cross any lane marking. The system shall aim to keep the vehicle in a stable lateral position inside the lane of travel to avoid confusing other road users.
- 5.2.2. The activated system shall detect a vehicle driving beside as defined in paragraph 7.1. and if necessary adjust speed and/or the lateral position of the vehicle within its lane as appropriate.
- 5.2.3. The activated system shall control the speed of the vehicle.
- 5.2.3.1. The maximum speed up to which the system is permitted to operate is 60 km/h
- 5.2.3.2. The activated system shall adapt the vehicle speed to infrastructural and environmental conditions (e.g. narrow curve radii, inclement weather).
- 5.2.3.3. The activated system shall detect the distance to the next vehicle in front as defined in paragraph 7.1. and shall adapt the vehicle speed in order to avoid collision.

While the ALKS vehicle is not at standstill, the system shall adapt the speed to adjust the distance to a vehicle in front in the same lane to be equal or greater than the minimum following distance.

In case the minimum time gap cannot be respected temporarily because of other road users (e.g. vehicle is cutting in, decelerating lead vehicle, etc), the vehicle shall readjust the minimum following distance at the next available opportunity without any harsh braking unless an emergency manoeuvre would become necessary.

The minimum following distance shall be calculated using the formula:

$$d_{min} = v_{ALKS} * t_{front}$$

Where:

 $d_{min} \quad = \quad \quad the \ minimum \ following \ distance$

 v_{ALKS} = the present speed of the ALKS vehicle in m/s;

 $t_{front} \quad = \quad \quad minimum \ time \ gap \ in \ seconds \ between \ the \ ALKS \ vehicle \ and \ a$

leading vehicle in front as per the table below:

Present travel speed of the ALKS vehicle is greater than		Minimum time gap	Minimum following
			distance
km/h	m/s	S	m

7,2	2,0	1,0	2,0
10	2,78	1,1	3,1
20	5,56	1,2	6,7
30	8,33	1,3	10,8
40	11,11	1,4	15,6
50	13,89	1,5	20,8
60	16,67	1,6	26,7

For speed values not mentioned in the table, linear interpolation shall be applied.

Notwithstanding the result of the formula above for present speeds below 2 m/s the minimum following distance shall never be less than 2 m $^{+}$.

- 5.2.4. The activated system shall be able to bring the vehicle to a complete stop behind a stationary vehicle, a road user or a blocked lane of travel. This shall be ensured up to the maximum operational speed of the system.
- 5.2.5. The activated system shall detect the risk of an imminent collision e.g. with another road user ahead or beside the vehicle, due to a harsh decelerating lead vehicle, a suddenly cutting in vehicle or a suddenly appearing obstacle and shall automatically perform an appropriate emergency manoeuver as specified in paragraph 5.3.

It is recognised that the fulfilment of the requirement in paragraph 5.2.5.may not be fully achieved in other conditions than those for the tests in Annex [X]. However, (The system shall not deactivate or unreasonably switch the control strategy in these other under conditions not tested in Annex [X]. This shall be demonstrated in accordance with Annex Y [CEL] of this Regulation. [Needs rewording] [moved from 7.1.5 (second para) – please check if it is necessary to keep this clause]

Remark: revisit after discussion of proposals for test requirements

5.3. Emergency Manoeuvre (EM)

The fulfilment of the provisions of this paragraph shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL] and according to the relevant tests in Annex X.5

- 5.3.1. An emergency manoeuvre shall be carried out in case of an imminent collision risk as described in paragraph 5.2.5.
- 5.3.2. This manoeuvre shall decelerate the vehicle up to its full braking performance if necessary and/or may perform an automatic evasive manoeuvre, when appropriate.

If failures are effecting the braking or steering performance of the system, the manoeuvre shall be carried out with consideration for the remaining performance.

During the evasive manoeuvre the ALKS vehicle shall not cross the lane marking (outer edge of the front tyre to outer edge of the lane marking) [unless

⁴ The column for minimum following distance to be added to the table.

⁵ Requirement possibly moved to different section when text for Regulation restructured.

the system is capable of confirming and has confirmed that no critical situation would result from this manoeuvrel.

[The situation is deemed critical either if there is a risk of a collision with another road user in the evasive path, or if a vehicle approaching from the rear in the evasive lane [with the allowed or advised maximum speed] would be forced to decelerate at a higher level than [3] m/s², 0.4 s after the ALKS vehicle has crossed the lane marking, to ensure the distance between the two vehicles is never less than that which the ALKS vehicle travels in 1 s.]⁶

After the evasive manoeuvre the vehicle shall aim at resuming a stable position [either in its original or the adjacent lane of travel].

[The system shall demonstrate its capabilities to assess the criticality of an evasive manoeuvre crossing lane markings according to the relevant test in Annex X.]

Reminder: Need to have lane change possibility during critical situation in. Wording and parameters will be drafted by UK

- 5.3.3. An emergency manoeuvre shall <u>not only</u> be terminated <u>as soon asunless</u> the <u>imminent</u> collision risk disappeared or <u>in case of the driver</u> deactivatedion by the <u>driver</u>the system.
- 5.3.3.1. After an emergency manoeuvre is terminated the system shall continue to operate.
- 5.3.3.2. If the emergency manoeuvre results in the vehicle being at standstill, the signal to activate the hazard warning lights shall be generated, otherwise the system shall continue to operate. If the vehicle starts moving automatically drives off again, the signal to deactivate the hazard warning lights shall be deactivated generated automatically.
- The vehicle shall implement a logic signal indicating emergency braking as specified in UN-R13H.
- 5.4. Transition demand and system operation during transition phase

The fulfilment of the provisions of this paragraph shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL] and according to the relevant tests in Annex X.

5.4.1. The activated system shall recognise all situations in which it needs to transition the control back to the driver.

Remark from Industry: a system cannot detect all situations but only reasonable foreseeable

Types of situations in which the vehicle will generate a transition demand to the driver shall be declared by the vehicle manufacturer and included in the documentation package required in Annex [Y] [CEL].

⁶ Including lane change function for GRVA decision (note: lane change may need to be stored in DSSAD (in detail).)

⁷ Requirement possibly moved to different section when text for Regulation restructured.

- 5.4.2. The initiation of the transition demand shall be such that sufficient time is provided for a safe transition to manual driving.
- 5.4.2.1. In case of a planned [transition] event that would prevent the ALKS from continuing the operation, a transition demand shall be given latest [10] seconds before the event occurs, early enough that a to ensure the minimal risk maneuver, in case the driver would not resume control, following the transition phase would bring the vehicle to standstill before the situation necessitating the planned [transition] event is passed (eg. Standstill before end of highway) occurs.
- 5.4.2.2. In case of an unplanned [transition] event, a transition demand shall be given upon detection.
- 5.4.2.3 In case of any failure <u>affecting the operation</u> of the system—or of any function needed for the operation, the system shall immediately initiate a transition demand upon detection. 8
- 5.4.3. During the transition phase the system shall continue to operate. The system may reduce the speed of the vehicle to ensure its safe operation but shall not bring it to standstill unless required by the situation (e.g. due to vehicles or obstacles obstructing the path of the vehicle) or when caused by the a haptic warning according to paragraph 6.4.1 started at speeds below 20km/h.
- 5.4.3.1. Once in standstill the vehicle may remain in this condition and shall generate the signal to activate the hazard warning lights within 151 s.
- 5.4.3.2. During the transition phase, the transition demand shall be escalated latest after4 s after the start of the transition demand.
- 5.4.4. A transition demand shall only be terminated once the system is deactivated or a minimum risk manoeuvre has started.
- 5.4.4.1. In case the driver is not responding to a transition demand by deactivating the system (either as described in paragraph 6.2.4. or 6.2.5.), a minimum risk manoeuvre shall be started, earliest 10 s after the start of the transition demand.
- 5.4.4.1.1. Notwithstanding paragraph 5.4.4.1. a minimum risk manoeuvre may be initiated immediately in case of a severe ALKS or severe vehicle failure.

In case of a severe ALKS or vehicle failure the ALKS may no longer be capable of fulfilling the requirements of this Regulation, but it shall aim at enabling a safe transition of control back to the driver.

5.4.4.1.2. The manufacturer shall declare the types of severe vehicle failures and severe ALKS failures that will lead the ALKS to initiate a MRM immediately.

⁸ Possibly duplication – Consistency to be checked after restructuring document.

5.5. Minimum Risk Manoeuvre (MRM)

The fulfilment of the provisions of this paragraph shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL] and according to the relevant tests in Annex X. 9

5.5.1. During the minimum risk manoeuvre the vehicle shall be slowed down inside the lane or, in case the lane markings are not visible, remain on an appropriate trajectory taking into account surrounding traffic and road infrastructure, with an aim of achieving a deceleration demand not greater than [4.0] m/s².

Higher deceleration demand values are permissible for very short durations, e.g. as haptic warning to stimulate the driver's attention, or in case of a severe ALKS or severe vehicle failure.

Additionally, the signal to activate the hazard warning lights shall be generated with the start of the minimum risk manoeuvre.

5.5.2. The minimum risk manoeuvre shall bring the vehicle to standstill unless the system is deactivated by the driver during the manoeuvre.

[5.5.3. 40 In case the ALKS is capable of performing lane change manoeuvres during the MRM, including to the hard shoulder, this shall only be permitted if the situation is not critical.

Such lane changes are deemed critical either if there is a risk of a collision with another road user in the target lane, or if an approaching vehicle in the target lane would have to decelerate at a higher level than 3m/s², 0.4 s after the ALKS vehicle has crossed the lane marking, to ensure the distance between the two vehicles is never less than that which the ALKS vehicle travels in 1 s.

Any lane change shall be indicated to other road users according to traffic law and the signal to activate the hazard warning lights may be suppressed during the lane change manoeuvre.

The system's safety strategies shall be demonstrated and proved by the manufacturer to the satisfaction of the Technical Service.]

Reminder: Need to have lane change possibility during critical situation in. Wording and parameters will be drafted by UK

- 5.5.4. A minimum risk manoeuvre shall only be terminated once the system is deactivated or the system has brought the vehicle to a standstill.
- 5.5.5. The system shall be deactivated at the end of any minimum risk manoeuvre.
 The hazard warning lights shall remain activated unless deactivated manually and the vehicle shall not move away after standstill without manual input.
- 5.5.6. Reactivation of the system after the end of any minimum risk manoeuvere shall only be possible after each new engine start/run cycle.

Remark: Industry propose:

⁹ Requirement possibly moved to different section when text for Regulation restructured.

Holuding lane change function for GRVA decision (note: lane change may need to be stored in DSSAD (in detail).)

Reactivation of the system once the minimum risk manoeuvre has brought the vehicle to a standstill after the end of any minimum risk manoeuver shall only be possible after each new engine start/run cycle.

6. Human Machine Interface/Operator Information

6.1. Driver Availability Recognition System¹¹

The fulfilment of the provisions of this paragraph shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL] and according to the relevant tests in Annex X. ¹²

6.1.1. The system shall comprise a driver availability recognition system.

The driver availability recognition system shall detect if the driver is present in a driving position, if the safety belt of the driver is fastened and if the driver is available to take over the driving task.

6.1.2 Driver presence

A transition demand shall be initiated according to paragraph 5.4. if any of the following conditions is met:

- When the driver is detected not to be in the seat for a period of more than [1] second or
- when the driver's safety belt is unbuckled.

The second level warning of the safety-belt reminder according to UN-R16 may be used instead of an acoustic warning of the Transition Demand.

6.1.3. Driver availability

The system shall detect if the driver is available and in an appropriate driving position to respond to a transition demand by monitoring the driver.

The manufacturer shall demonstrate to the satisfaction of the technical service the vehicle's capability to detect that the driver is available to take over the driving task.

¹¹ Entire paragraph will be restructured to ease understanding.

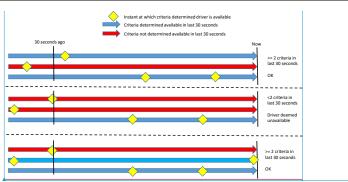
 $^{^{12}}$ Requirement possibly moved to different section when text for Regulation restructured.

6.1.3.1. Criteria for deeming driver availability

The system shall be able to detect if a driver is not available within a maximum of [30] seconds based on at least two availability criteria (e.g. input to driver-exclusive vehicle control, eye blinking, eye closure, conscious head and body movement).

As soon as the system cannot detect the driver to be available based on at least two availability criteria, the system shall provide a distinctive warning until appropriate actions of the driver are detected or until a transition demand is initiated.

Latest when the system does not detect appropriate actions from the driver during the distinctive warning for a period of more than [15] s a transition demand shall be initiated according to paragraph 5.4.


Justification for the number and combination of availability criteria, in particular with regard to the corresponding time interval, shall be provided by the manufacturer by documented evidence. This shall be assessed by the technical service according to Annex (CEL).

The driver shall be deemed to be unavailable unless at least two availability criteria (e.g. input to driver-exclusive vehicle control, eye blinking, eye closure, conscious head or body movement) have individually determined that the driver is available in the last 30 seconds.

At any time, the system may deem the driver unavailable.

As soon as the driver is deemed to be unavailable, or fewer than two availability criteria can be monitored, the system shall immediately provide a distinctive warning until appropriate actions of the driver are detected or until a transition demand is initiated. At the latest, a transition demand shall be initiated according to paragraph 5.4 if this warning continues for [15]s.

Justification for the number and combination of availability criteria, in particular with regard to the corresponding time interval, shall be provided by the manufacturer by documented evidence. However, the time interval required for any availability criteria shall not exceed 30 seconds. This shall be demonstrated by the manufacturer and assessed by the technical service according to Annex (CEL).

- [6.1.4. Other activities than driving that are provided by the vehicle to the driver once the ALKS is activated, shall be automatically suspended as soon as the system issues a transition demand or is deactivated whichever comes first.]¹³
- 6.2. Activation, Deactivation and Driver Input¹⁴

The fulfilment of the provisions of this paragraph shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL] and according to the relevant tests in Annex $X^{.15}$

- 6.2.1. The vehicle shall be equipped with dedicated means for the driver to activate (active mode) and deactivate (off mode) the system. This shall be permanently visible to the driver.
- 6.2.2. The default status of the system shall be the off mode at the initiation of each new engine start/run cycle.

This requirement does not apply when a new engine start/run cycle is performed automatically, e.g. by the operation of a stop/start system.

- 6.2.3. The system shall become active only upon a deliberate action by the driver and if all the following conditions are met:
 - The driver is in the driver seat and the driver's safety belt is fastened according to paragraph 6.1.,
 - the driver is available to take over control of the dynamic driving task according to paragraph 6.1.,
 - no failure affecting the safe operation or the functionality of the ALKS is present,

 15 Requirement possibly moved to different section when text for Regulation restructured.

Kommentiert [JR6]: New graphic as per powerpoint presentation to be inserted (white lines before the 30 second marker)

Feldfunktion geändert

¹³ To be shared with WP.1

¹⁴ Entire paragraph will be restructured to ease understanding (e.g. avoid "manual" and "automatic" deactivation).

- DSSAD is operational,
- the environmental and infrastructural conditions allow the operation,
- positive confirmation of system self-check and
- the vehicle is on roads where pedestrians and cyclists are prohibited and which, by design, are equipped with a physical separation that divides the traffic moving in opposite directions and prevent traffic from cutting across the path of the vehicle.

If any of the above conditions is no longer fulfilled, the system shall immediately initiate a transition demand unless specified differently in this regulation.

Remark: Japan needs time to reflect

6.2.4. It shall be possible to manually deactivate (off-mode) the system by an intentional action of the driver using the same means as to activate the system, as mentioned in paragraph 6.2.1

The means of deactivating shall provide protection against unintentional manual deactivation for example by requiring a single input exceeding a certain threshold of time or a double press, or two separate but simultaneous inputs.

Additionally, it shall be ensured the driver is in lateral control of the vehicle at the time of the deactivation, by e.g. placing the deactivation means on the steering control or confirming the driver is holding the steering control.

- 6.2.5. The system shall not be deactivated by any driver input other than those described below in paragraphs 6.2.5.1 to 6.2.5.4.
- 6.2.5.1. Deactivation by input to driving controls

The system shall be deactivated when at least one of the following conditions is met:

- The driver overrides the system by steering while holding the steering control and this override is not suppressed, as specified in paragraph 6.3.
 or
- the driver is holding the steering control and overrides the system by braking or accelerating, as specified in paragraph 6.3.1.
- 6.2.5.2. Deactivation during an ongoing transition demand<u>or an ongoing minimum</u> risk manoeuvre

In case a transition demand $\underline{\text{or a minimum risk manoeuvre}}$ is on-going, the system shall only be deactivated

- as defined in paragraph 6.2.5.1. or
- upon detection that the driver has taken hold of the steering control as a response to the transition demand or the minimum risk manoeuvre and provided the system confirms the driver is attentive as defined in paragraph 6.3.1.1.

6.2.5.3. Deactivation during an ongoing emergency manoeuvre

In case of an ongoing emergency manoeuvre, the deactivation of the system may be delayed until the imminent collision risk disappeared.

6.2.5.4. Deactivation in case of a severe vehicle failure or a severe ALKS failure

In case of a severe vehicle failure or a severe ALKS failure the ALKS may employ different strategies with regard to deactivation.

These different strategies shall be declared by the manufacturer and their effectiveness shall be assessed by the Technical Service with regard to ensuring a safe transition of control from the system to the human driver according to Annex Y [CEL].

6.2.6. When deactivated (off mode) the system shall not provide any continuous control of either longitudinal or lateral movement of the vehicle.

On deactivation of the system, there shall not be an automatic transition to any function, which provides continuous longitudinal and/or lateral movement of the vehicle (e.g. ACSF-B1 System).

After deactivation, Corrective Steering Function (CSF) may be active with the aim at accustoming the driver to execute the lateral control task by gradually reducing lateral support.

Notwithstanding both paragraphs above, any other safety system delivering longitudinal or lateral support in accident-prone situations (e.g. Advanced Emergency Braking System (AEBS), Electronic Stability Control (ESC), Brake Assist System (BAS) or Emergency Steering Function (ESF)) shall not be deactivated in case of deactivation of ALKS.

- 6.2.7. Any deactivation shall be indicated to the driver as defined in paragraph 6.4.2.3.
- 6.3. System override
- 6.3.1. A driver input to the steering control shall override the lateral control function of the system when the input exceeds a reasonable threshold designed to prevent unintentional override.

This threshold shall include a specified force and duration and shall vary depending on parameters that include criteria used for driver attentiveness, to be checked during the drivers input as defined in paragraph 6.3.1.1

These thresholds and the rational for any variation shall be demonstrated to the Technical Service during the assessment according to Annex X [CEL].

6.3.1.1. Driver attentiveness 16

The system shall detect if the driver is attentive. The driver is deemed to be attentive when at least one of the following criteria is met:

Driver gaze direction is confirmed as primarily looking at the road ahead,

 $^{^{16}}$ Paragraph will be moved to different section when text for Regulation restructured.

- driver gaze direction is being confirmed as looking at the rear view mirrors or
- driver head movement is confirmed as primarily directed towards the driving task.

The specification for confirming these or equally safe criteria must be declared by the manufacturer and supported by documented evidence. This shall be assessed by the technical service according to Annex Y (CEL).

- 6.3.2. A driver input to the braking control resulting in a higher deceleration than that induced by the system or maintaining the vehicle in standstill by any braking system, shall override the longitudinal control function of the system.
- 6.3.3. A driver input to the accelerator control may override the longitudinal control function of the system. However, such an input shall not cause the system to no longer meet the requirements of this Regulation.
- 6.3.4. Any driver input to the accelerator or brake control shall immediately initiate a transition demand as specified in paragraph 5.4., when the input exceeds a reasonable threshold designed to prevent unintentional input.
- 6.3.5. Notwithstanding the provisions laid down in paragraphs 6.3.1. to 6.3.3., the effect of the driver input on any control may be reduced or suppressed by the system in case the system has detected an imminent collision risk due to this driver input.
- 6.3.6. In case of a severe vehicle failure or a severe ALKS failure the ALKS may employ different strategies with regard to system override. These different strategies shall be declared by the manufacturer and their effectiveness shall be assessed by the Technical Service with regard to ensuring a safe transition of control from the system to the human driver.
- 6.3.7. The fulfilment of the provisions in paragraph 6.3 and its subparagraphs shall be demonstrated by the manufacturer to the technical service during the inspection of the safety approach as part of the assessment to Annex Y [CEL].¹⁷
- 6.4. Information to the driver
- 6.4.1. The following information shall be indicated to the driver:
 - the system status as defined in paragraph 6.4.2.
 - any failure affecting the operation of the system with at least an optical signal unless the system is deactivated (off mode),
 - transition demand by at least an optical and in addition an acoustic and/or haptic warning signal.

Latest $[4_]s$ after the initiation of the transition demand, the transition demand

 $^{^{17}}$ Possibly duplication – If needed, move requirement to different section when text for Regulation restructured.

- shall contain a constant or intermittent haptic warning unless the vehicle is at standstill and
- shall be escalated and remain escalated until the transition demand ends.
- minimum risk manoeuvre by <u>at least</u> an optical signal and <u>either in</u> <u>addition</u> an acoustic <u>and/</u>or a haptic warning signal and
- emergency manoeuvre by an optical signal

The optical signals above shall be in an adequate size and contrast. The acoustic signals above shall be loud and clear.

- 6.4.2. System status
- 6.4.2.1 System unavailability indication

In case activation of the system following the deliberate action of the driver is denied by the system due to system unavailability, this shall be at least [visually-optically] displayed to the driver.

6.4.2.2 System status display when activated

Upon activation the system status (active mode) shall be displayed by a dedicated optical signal to the driver.

The optical signal shall contain an unambiguous indication including

- a) a steering control or a vehicle, with an additional "A" or "AUTO," or the standardized symbols in accordance with Regulation 121, and additionally
- b) an easily perceptible indication in the peripheral field of vision and located near the direct line of driver's sight to the outside in front of the vehicle, e.g. prominent indication in the instrument cluster or on the steering control covering part of the outer rim perimeter facing towards the driver.

The optical signal shall indicate the active system state until the system is deactivated (off mode).

The optical signal shall be constant while the system is in regular operation and with the initiation of a transition demand at least the indication according to (b) shall change its characteristics, e.g. to an intermittent signal or a different colour.

When an intermittent signal is used, a low frequency shall be used in order to not unreasonably alert the driver.

During the Transition Phase and Minimal Risk Maneuver, the indication according to a) may be replaced by the instruction to take over manual control according to 6.4.3.

6.4.2.3 System status display when deactivated

Upon deactivation when the system status changes from active mode to (off mode) this shall be indicated to the driver by at least an optical warning signal. This optical signal shall be realized by non-displaying the optical signal used to indicate the active mode.

Additionally, an acoustic warning signal shall be provided unless the system is deactivated following a transition demand which contained an acoustic signal.

6.4.3. Transition Phase and Minimum Risk Manoeuver

During the transition phase and the minimum risk manoeuver, the system shall instruct the driver in an intuitive and unambiguous way to take over manual control of the vehicle. The instruction shall include a pictorial information showing hands and the steering control and may be accompanied by additional explanatory text or warning symbols, as shown in the example below.

- 6.4.3.2. With the start of the minimum risk manoeuvre, the given signal shall change its characteristics to emphasize the urgency of an action by the driver. e.g. by red flashing of the steering control and moving hands of the pictorial information.
- 6.4.4. Where examples are given above, an adequate and equally perceptible interface design for the optical signals may be used instead. This shall be demonstrated by the manufacturer and shall be supported by documented evidence. This shall be assessed by the Technical Service according to Annex Y (CEL).
- 6.4.5. Prioritization of ALKS warnings

The warnings of an ALKS during a transition phase, a Minimal Risk Manoeuvre or an Emergency Manoeuvre may be prioritized over other warnings in the vehicle.

The prioritization of different acoustic and optical warnings during the ALKS operation shall be declared by the manufacturer to the Technical Service during Type Approval.

7. Object Event Detection and Response

7.1. Sensing **requirements** system

The ALKS vehicle shall be equipped with a sensing system such that, it can at least determine the driving environment (e.g. road geometry ahead, lane markings) and the traffic dynamics:

- across the full width of its own traffic lane, the full width of the traffic lanes immediately to its left and to its right, up to the limit of the forward detection operating range;
- 2) Along the full length of the vehicle and up to the limit of the lateral detection range.

The requirements of this paragraph are without prejudice to other requirements in the regulation, most notably paragraph 5.1.1.

7.1.1. **Forward** detection range of the sensing system to the front

The manufacturer shall declare the forward detection range measured from the forward most point of the vehicle. The detection range of the sensing system shall be declared by the vehicle manufacturer and This declared value shall be at least 46 metres measured from the forward most point of the ALKS vehicle.

The Technical Service shall verify **that** the distance at which the vehicle sensing system detects a leading vehicle **road user** during the relevant test in Annex [X] is equal or greater than the declared value.

The measured value shall be equal to or higher than the declared value.

7.1.2. Lateral detection range

The manufacturer shall declare the lateral detection range. The declared value range shall be sufficient to cover the full width of the lane immediately to the left and of the lane immediately to the right of the vehicle.

The Technical Service shall verify that the distance at which the vehicle sensing system detects vehicles during a road user during the relevant test in Annex [X]. This range shall be equal or greater than the declared range.

- 7.1.3. The ALKS shall implement strategies to detect and **compensate for** eope with environmental and technical conditions **that** which might reduce the detection range of the sensing system, e.g. prevent enabling the system, disabling the system and transferring the control back to the driver, reducing the speed when visibility is too low.
 - These strategies shall be described by the vehicle manufacturer and assessed according to Annex Y (CEL).
- 7.1.4. The vehicle manufacturer shall provide evidence that the effects of wear and ageing do not reduce the performance of the sensing system below the minimum required value specified in paragraph 7.1. over the lifetime of the system/vehicle.
- 7.1.5. The fulfilment of the provisions of paragraph 7.1. and its subparagraphs shall be demonstrated to the technical service and tested according to the relevant tests in Annex [X].

7.1.6. A single perception malfunction without failure should not induce hazardous event. The design strategies put in place shall be described by the vehicle manufacturer and their safety shall be demonstrated to the satisfaction of the technical service in accordance with Annex Y (CEL).

8. Data Storage for Automated Systems (DSSAD)¹⁸

Placeholder to be filled by the EDR/DSSAD group

Remark: Vehicles with ALKS shall be fitted with an DSSAD

List of required signals to be stored shall be delivered to the IWG on DSSAD

9. Cybersecurity and Software-Updates¹⁹

- 9.1. The effectiveness of the system shall not be adversely affected by cyber-attacks, cyber threats and vulnerabilities. The effectiveness of the security measures shall be demonstrated by compliance with Regulation No. XX.
- 9.2. If the system permits software updates, the effectiveness of the software update procedures and processes shall be demonstrated by compliance with Regulation No. XX.

10. Modification of vehicle type and extension of approval

- 10.1. Every modification of the vehicle type as defined in Paragraph 2.x. above shall be notified to the Type Approval Authority which approved the vehicle type. The Type Approval Authority may then either:
- 10.1.1. Consider that the modifications made do not have an adverse effect on the conditions of the granting of the approval and grant an extension of approval;
- 10.1.2. Consider that the modifications made affect the conditions of the granting of the approval and require further tests or additional checks before granting an extension of approval.
- 10.2. Confirmation or refusal of approval, specifying the alterations, shall be communicated by the procedure specified in paragraph 4.3, above to the Contracting Parties to the Agreement which apply this Regulation.
- 10.3. The Type Approval Authority shall inform the other Contracting Parties of the extension by means of the communication form which appears in Annex 1 to this Regulation. It shall assign a serial number to each extension to be known as the extension number.

¹⁸ To be revised in accordance with IWG EDR/DSSAD and subject to GRVA decision.

¹⁹ To be revised in accordance with TF CS/OTA and subject to GRVA decision.

Remark: will be updated by Japan

11. Conformity of production

- 11.1. Procedures concerning conformity of production shall comply with those set out in the 1958 Agreement, Schedule 1 (E/ECE/TRANS/505/Rev.3) and meet the following requirements:
- 11.2. A vehicle approved pursuant to this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements of this regulation;
- 11.3. The Type Approval Authority which has granted approval may at any time verify the conformity of control methods applicable to each production unit. The normal frequency of such inspections shall be once every two years.

12. Penalties for non-conformity of production

- 12.1. The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirements laid down in paragraph 8, above are not complied with.
- 12.2. If a Contracting Party withdraws an approval it had previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation by sending them a communication form conforming to the model in Annex 1 to this Regulation.

13. Production definitively discontinued

If the holder of the approval completely ceases to manufacture a type of vehicle approved in accordance with this Regulation, he shall so inform the Type Approval Authority which granted the approval, which in turn shall forthwith inform the other Contracting Parties to the Agreement applying this Regulation by means of a communication form conforming to the model in Annex 1 to this Regulation.

14. Names and addresses of technical series responsible for conducting approval tests and of Type Approval Authorities

The Contracting Parties to the Agreement applying this Regulation shall communicate to the United Nations Secretariat ²⁰ the names and addresses of the Technical Services responsible for conducting approval tests and of the Type Approval Authorities which grant approval and to which forms certifying approval or extension or refusal or withdrawal of approval are to be sent.

²⁰ The UNECE secretariats provides the online platform ("',343 Application") for exchange of such information with the secretariat: https://www.unece.org/trans/main/wp29/datasharing.html

Annex 1 Note: Contents not revised yet!

Communication

(Maximum format:	A4 (210 x 297 mm)	issued by:	Name of administration:
Concerning: ²	Approval granted Approval extended Approval refused Approval withdrawn Production definitively dis	continued	

of a vehicle type with regard to steering equipment pursuant to UN Regulation No. X

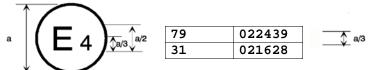
Appro	val No Extension No	••
1.	Trade name or mark of vehicle	
2.	Vehicle type	
3.	Manufacturer's name and address	
4.	If applicable, name and address of manufacturer's representative	
5.	Brief description of the steering equipment	
5.1.	Type of steering equipment	
5.2.	Steering control	
5.3.	Steering transmission	
5.4.	Steered wheels	
5.5.	Energy source	
6.	Results of tests, vehicle characteristics	
6.1.	Steering effort required to achieve a turning circle of 12 m radius with a intact system and 20 m radius with a system in the failed condition	
6.1.1.	Under normal conditions	

Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in this Regulation). Strike out what does not apply.

6.1.2.	After failure of special equipment
6.2.	Other tests required by this Regulationpass/fail ²
6.3.	Adequate documentation in accordance with Annex 6 was supplied in respect of the following parts of the steering system:
7.	Applicable only to towing vehicles
7.1.	The towing vehicle is/is not^2 equipped with an electrical connector fulfilling the relevant requirements of Annex 7
7.2.	The maximum current available is
8.	Applicable only to trailers
8.1.	The steering system of the trailer fulfils the relevant provisions of Annex 7 to UN Regulation No. 79
8.2.	The maximum current required for the trailer steering system is A^3
8.3.	The trailer steering system is/is not^2 able $t\sigma$ supply auxiliary equipment on the trailer with electrical energy.
9.	Vehicle submitted for approval on
10.	Technical Service responsible for conducting approval tests
11.	Date of report issued by that service
12.	Number of report issued by that service
13.	$Approval\ granted/extended/refused/withdrawn^2$
14.	Position of approval mark on vehicle
15.	Place
16.	Date
17.	Signature
18.	Annexed to this communication is a list of documents in the approval file deposited at the administration services having delivered the approval and which can be obtained upon request.

 $^{^{\,3}\,}$ As defined by the vehicle manufacturer – see paragraphs 2.3. and 3.1. of Annex 7 as appropriate.

Annex 2 Note: Contents not revised yet!


Arrangements of approval marks

Model A (See paragraph 4.4. of this Regulation)

The above approval mark affixed to a vehicle shows that the vehicle type concerned has, with regard to steering equipment, been approved in the Netherlands (E 4) pursuant to UN Regulation No. $\frac{\mathbf{X}}{\mathbf{X}}$ under approval No. 022439. The approval number indicates that the approval was granted in accordance with the requirements of UN Regulation No. 79 incorporating the 02 series of amendments.

Model B (See paragraph 4.5. of this Regulation)

 $a = 8 \ mm \ min$

a = 8 mm min

The above approval mark affixed to a vehicle shows that the vehicle type concerned has been approved in the Netherlands (E 4) pursuant to Regulations Nos. 79 and 31.1 The approval numbers indicate that, at the dates when the respective approvals were given, UN Regulation No. 79 incorporating the 02 series of amendments and UN Regulation No. 31 included the 02 series of amendments.

 $^{^{1}\,}$ The second number is given merely as an example.

Annex 3 System information data¹

The following data shall be provided, together with the documentation package required in Annex [X] of this UN Regulation, to the Technical Service at the time of type approval.

- A list of types of situations in which the vehicle may generate a transition demand to the driver.
- 1.2. Information about how the system detects that the driver is available to take over the control.

Remark: could also be part of Annex CEL

- 1.3. The means to monitor the driving environment.
- 1.4. The means to activate, override or deactivate the system including the strategy how the system is protected against unintentional deactivation, the threshold values for a steering override and how the system assesses that the driver has directed his gaze to the driving task.
- 1.5. Information about how the software version(s) and the failure warning signal status can be readable in a standardized way via the use of an electronic communication interface, at least be the standard interface (OBD port).
- 1.6. Description of the types of severe vehicle failures and severe ALKS failures that will lead the ALKS to initiate a MRM immediately.
- 1.7. For driving situations not covered by the tests of Annex [X], the safe operation of the system shall be demonstrated by the vehicle manufacturer on the base of Annex X of this Regulation.
- 1.8. Installation

The manufacturer shall provide information regarding the installation options that will be employed for the individual components that comprise the sensing system. These options shall include, but are not limited to, the location of the component in/on the vehicle, the material(s) surrounding the component, the dimensioning and geometry of the material surrounding the component, and the surface finish of the materials surrounding the component, once installed in the vehicle. The information shall also include installation specifications that are critical to the system's performance, e.g. tolerances on installation angle.

Changes to the individual components of the sensing system, or the installation options, shall be notified to the Type Approval Authority and be subject to further assessment.

- 1.9. The system behaviour during a MRM.
- 1.10. The system behaviour during an EM.

Remark: add footnote "in case UN Regulation on software update will be adopted, add reference with regard to RXSWIN.

¹ Paragraph has not been reviewed in the last meeting.

Annex 4 Special requirements to be applied to the safety aspects of electronic control systems [and Audit]²

 $^{^{2}\ \}mbox{To}$ be revised in accordance with IWG VMAD and subject to GRVA decision.

Annex 5 Tests [work in progress]