Discussion materials for new mandate on in-vehicle battery durability

EVE 33 – Geneva

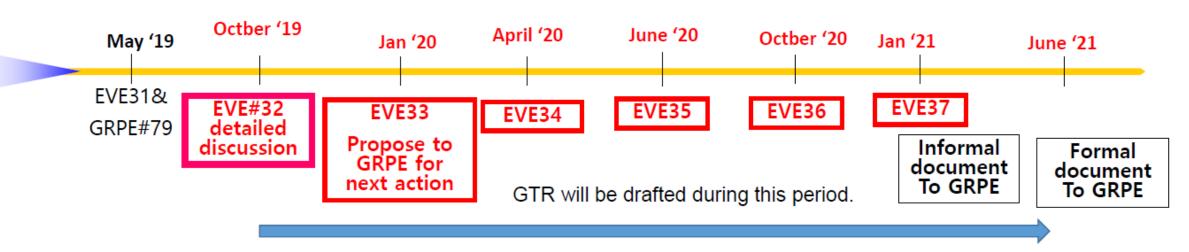
January 13, 2020

Changes from conference call of 12 Dec

- Terminology
 - "DF" (Deterioration Factor) changed to "PR" (Performance Requirement)
 - "EI" (Exposure Indices) changed to "UI" (Usage Indices)
- Timeline updated to reflect mandate proposal

GTR on battery durability: Status

- General goals of a durability GTR (EVE 31):
 - Establish minimum durability requirements
 - Prevent substandard products from entering the market
 - Allow continued development of the GTR as the industry evolves
 - Implement a data collection mechanism for improving the GTR in the future
- * EVE32, Brussels: near-term approach could be some combination of:
 - Predetermined deterioration factors (DFs)
 - Confirmation via in-service conformity (ISC)
- GRPE desires preliminary GTR by January 2021


Observations of Japan – EVE32

- Difficult to determine an appropriate DF
 - There is no durability test method that is representative and market-correlated
 - TEMA model limited by chemistries; results not yet correlated to the market
 - Other sources of degradation data are limited due to lack of information on usage (charging rate, temperature exposure, etc.)
 - Uncertain how DF would affect the driving range shown on certification label
- Need to describe how to perform ISC
 - How to select ISC vehicles (what variations in environment and usage; how many)
 - How to define pass/fail criteria there are no regulatory values
 - Long-range PEVs impose long test time; are there other ways to evaluate at ISC?
- Accomplishing all this by January 2021 is extremely difficult

Japan proposal – EVE32

- Limit initial scope of GTR to provide information on battery condition
 - Battery State of Health (SOH) envisioned as a measure of either:
 - Remaining electric driving range, compared to original range (CoC)
 - Remaining energy capacity, compared to original capacity (catalogue)
 - SOH readable by customer and from OBD
- Scope of GTR:
 - Define SOH measurement method
 - Establish requirement for SOH on OBD
- Validation testing also would be performed
- Might be possible to have preliminary GTR by January 2021

Timeline proposed by Japan (EVE32)

	2019_4Q	2020_1Q	2020_2Q	2020_3Q	2020_4Q	2021_1Q	2021_2Q
Application to SAE OBD ID	Apply☆		>	★ Register	red		
Validation tests by JARI.Prius_PHV,LEAF		>		by JRC,	EPA?		
verification of Error and variation standardization			>				
Guidelines ver.FY2019 completed			*				
Incorporation into the GTR						>	

Observations of European Commission – EVE32

- GTR for battery durability is a must
- Japan SOH proposal contains good elements
 - Proposal needs to clearly define how the SOH is measured
 - Means of independent verification needed (not just OBD value)
 - Define verification test using WLTC
 - Define sample sizes, tolerances, etc.
- Alternative approaches:
 - Manufacturer defines and declares a capacity or range DF (or)
 - CPs define a maximum range deterioration performance requirement (PR)
 - Verified by ISC (need to define pass/fail criteria, vehicle selection, etc)

European Commission suggestion – EVE32

- Might define DFs or PRs (by OEM or CP) based on current knowledge
- Information gathering component:
 - Require SOH indicator and SOH reading capability
 - Use TEMA or other models to further inform DF or PR
- Performance definition component:
 - Use gathered information to further refine DFs or PRs
- Performance verification component (ISC):
 - WLTC procedure for range determination, or alternative
 - Vehicle selection criteria
 - Statistical method for analysis

Observations of US

- Japan proposal is a good starting point
 - SOH on OBD helps identify "substandard" products
 - SOH data could be collected at ISC to improve GTR over time
- "Preliminary" DF could be established now, using current knowledge
 - Find consensus on <u>clearly</u> substandard performance (e.g. 60% @ 3 yrs, or similar)
 - Acts as baseline for all usage cases, to be made more stringent later
 - CoC should continue to show driving range at beginning-of-life
 - E.g. a 60% PR applied to 200 km range when new should not be 120 km on label
- ISC should take actual usage into account, somehow
 - Very expensive to design battery for the very rarest, extreme use cases
 - If actual usage of ISC vehicle is known, "extreme" use cases could be evaluated differently from "normal" use cases

New concept: Usage Indices (UI) on OBD

- A way to account for actual usage of vehicle at ISC
- ECU monitors actual exposure of vehicle over time
 - Converts it to a UI value (e.g. 0 to 1) that is stored in OBD
 - UI to be collected for each of several parameters that affect battery health:
 - Temperature of battery
 - Charge rates
 - Discharge rates
 - Ampere-hour throughput
 - Elapsed time since manufacture
 - Others?
- Vehicles with extreme UI values at ISC are eliminated, or adjusted
- Manufacturers are almost certainly already recording many of these parameters, to help with warranty claim assessment

"Durability toolbox"

Tool	What it does	Tasks			
DFs/PRs (established concept)	Establishes performance requirement	 Define preliminary "substandard" baseline PR Refine using incoming SOH data Refine using TEMA and incoming EI data 			
SOH on OBD (Japan proposal)	Represents actual performanceProvides data (to refine PRs)	Define basis for determining SOHValidate via testing			
UIs on OBD (US proposal)	 Represents actual usage Distinguishes between normal and extreme usage Provides data to define normal usage 	 Identify exposures to be indexed (temp, etc) Define how to compute UI index value for each Define "normal" UI values using incoming data 			
TEMA model (established tool)	 Relates usage to SOH (to suggest or refine PRs) 	Use TEMA to correlate usage with SOH			

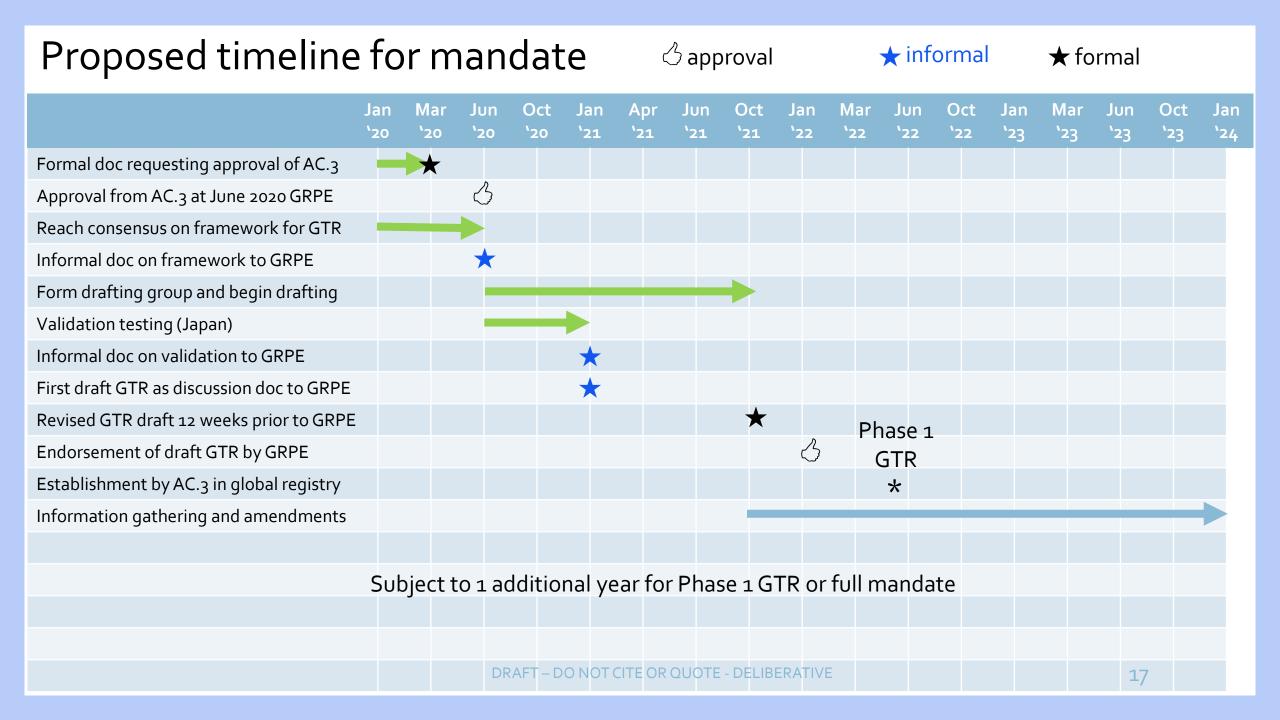
Possible framework – three phases

- Phase 1 (implements data collection mechanism and PR/ISC framework)
 - Limited scope GTR with consensus PR, OBD requirements, simple ISC
 - Might allow draft GTR by January 2021 target
- Phase 2 (tightens PR and considers usage at ISC)
 - SOH and UI data continues to be collected; "Normal" usage defined
 - PR refined based on TEMA modeling of "normal" usage
 - ISC focuses on vehicles with "normal" UI values from OBD
- Phase 3 (allows incoming data to inform PR)
 - Data-based PR, derived from SOH and UI data from Phases 1 and 2
 - Vehicles with "extreme" UI values either eliminated or adjusted

Phase 1 – OBD and preliminary PR

- Require SOH on OBD (the Japan proposal)
- New: Require UIs on OBD
- New: Establish preliminary PR
 - Consensus of current knowledge on deterioration and customer expectations
 - It is only a "baseline" to exclude "substandard" performers
- ISC consists of:
 - Collect SOH and UIs from OBD for data collection purposes
 - Perform range test by WLTC
 - Measured range must satisfy the preliminary PR
- Informal GTR draft might be possible by January 2021

Phase 2 – refine PR, consider UIs at ISC


- Refine PR using modeling
 - Define "normal" usage for each UI factor
 - Use TEMA to refine PR by modeling "normal" usage
 - Determine corresponding "normal" values for each UI by modeling
- ISC consists of:
 - Collect SOH and UIs from OBD
 - Evaluate only vehicles that have "normal" UIs (eliminate outliers)
 - SOH must satisfy Phase 2 PR
 - Subject to independent verification by WLTC
- Update GTR (2022-23?)

Phase 3 – data-based PR (or DF)

- ❖ By now, SOH and UI data is coming in from Phase 1 and 2 ISC
- Refine PR using incoming data and modeling (or adopt DF)
 - SOH data collected in Phase 1 and 2
 - Additional TEMA modeling of "normal" usage
- Use incoming UI data to refine "normal" values for each UI
- ISC consists of:
 - Collect SOH and UIs from OBD
 - Evaluate only vehicles that had "normal" Uls, or apply adjustment to "extreme"
 - SOH must satisfy Phase 3 PR (or DF)
 - Subject to independent verification by WLTC
- Update GTR (2024-25?)

Proposed mandate tasks

- (a) Deliver a limited scope GTR to AC.3 by May 2022 with:
 - (i) electrified vehicle battery performance criteria,
 - (ii) OBD requirements on battery health information and usage data; and
 - (iii) a provisional in-service conformity test.
- (b) Refine performance criteria for in-vehicle battery durability through assessment of further modelling with data collected and developing normal usage criteria
- (c) Improve GTR and in-service conformity criteria with collected data and updated modelling

Important note

- All concepts discussed here (Japan, EC, US) address only the impact of energy capacity fade on EV or PHEV electric range
- They may not fully address:
 - Effect of <u>power</u> fade on <u>air</u> <u>pollutants or energy</u> <u>consumption</u> for HEVs, or blended PHEVs
 - Uncertain if capacity fade is an adequate indication of change in energy consumption for BEV

	Air pollutants	CO2/energy consumption	Electric range
HEV	No	No	n/a
PHEV	partly, via UF	partly, via UF	Yes
BEV	n/a	uncertain	Yes