Western Digital.

Data Storage Technology Overview

Russell A. Ruben ラッセル・ルーベン Director, Global Automotive

January 29, 2020

Agenda

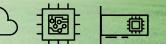
- History and Trends of Automotive Storage
- Data Storage Types and Data Recording Scenarios
- Considerations of Storage

A Powerful Platform

Mobile

Data Center

Auto


Compute

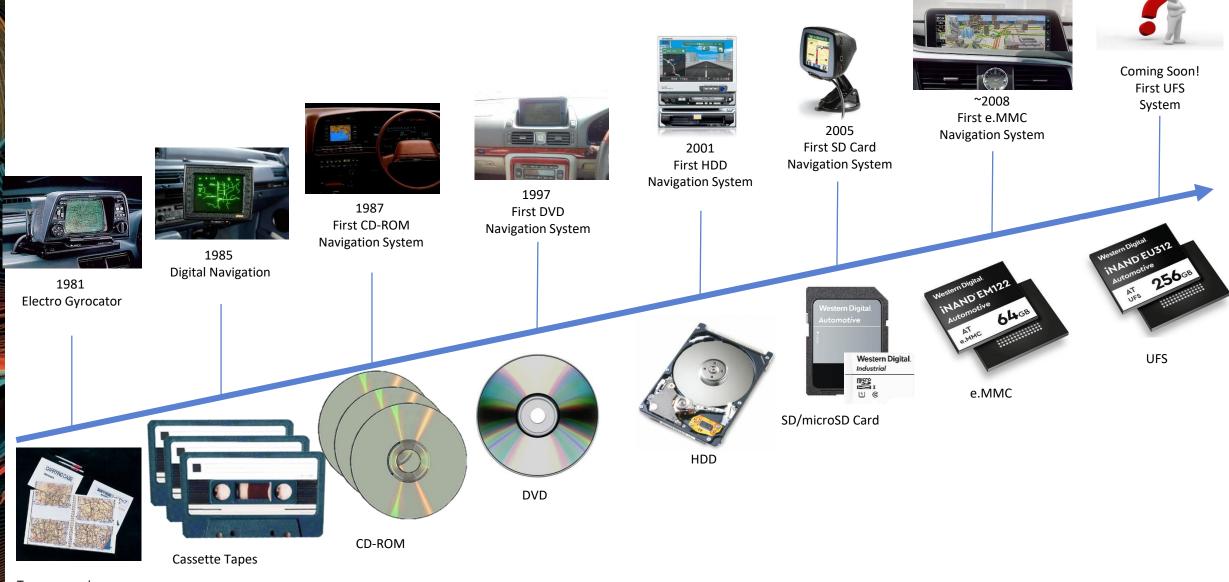
Home

Industrial

PORTFOLIO BREADTH

TECHNOLOGY ENGINE

~14,000 active patents

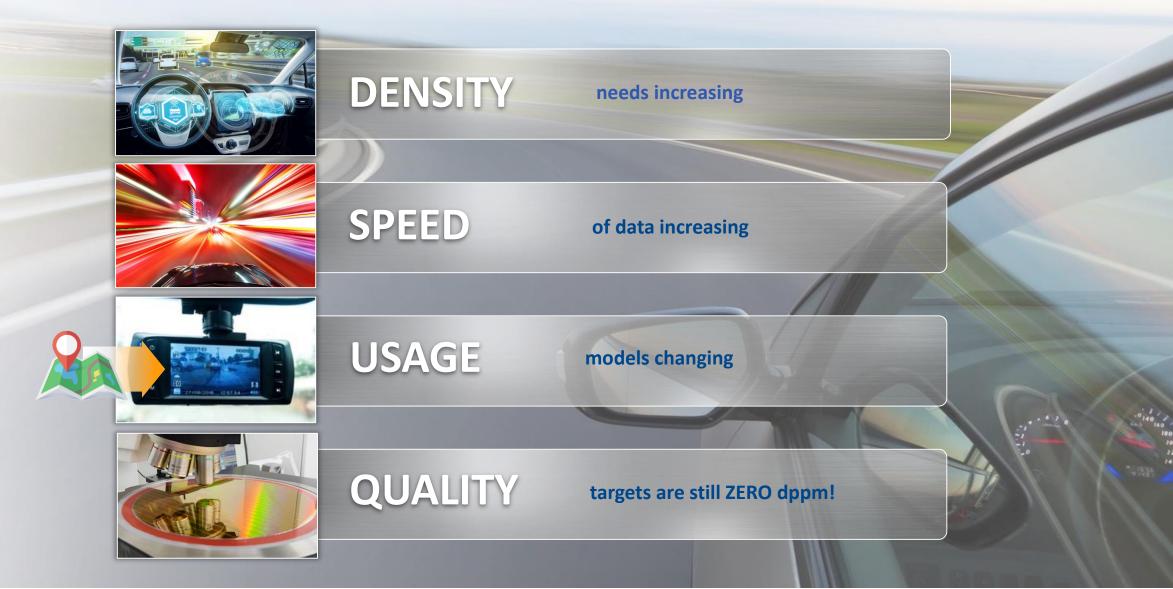

GLOBAL SCALE

62,000+ employees worldwide

Western Digital. © 2019 Western Digital Corporation or its affiliates. All rights reserved All rights reserved.

³3

Evolution of Automotive Data Storage



Transparencies

Automotive Data Storage Today

Automotive Storage Trends

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Data Storage Enabling the Car of the Future

Changing Storage Usage Models

Faster Boot and Read Speeds

Operating systems and applications are getting more complex

Wider Temperature Environments

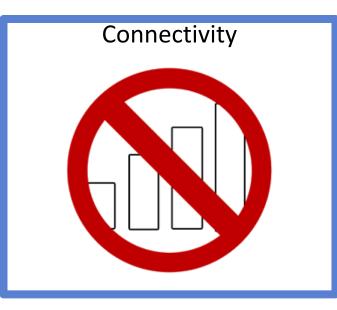
More powerful processors

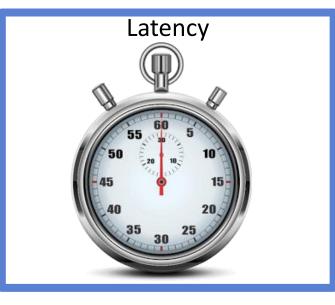
New Write-intensive Workloads

Multi-camera recording, autonomous drive, data telematics

Automotive Data Storage Tomorrow

Growth of Data Storage in Vehicles


3D/HD Mapping • Infotainment/Navigation • Digital Clusters • Telematics Gateways • V2V/V2I Comms • Autonomous Drive • Data Recorders



Western Digital

Hypervisor + multiple OS

In Car Storage v. Cloud Storage

Automotive Data Storage Types and Scenarios for Data Recording

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Types of Data Storage Technology

Each storage technology has a different role

Volatile Storage

DRAM – Used for storing data that the processor is using. Very fast read/write capabilities

Non-volatile Storage

Magnetic

- HDD High data storage capacity, but not suited to applications with shock/vibe
- Tape High data storage capacity, but not suited to applications with shock/vibe

Flash

- NOR Low storage capacity and resilient to shock/vibe
- NAND High storage capacity and resilient to shock/vibe

Used in automotive today No longer used in automotive

Other data storage products exist but are not commercially viable today

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

What is Used Today for Event Data Recorders

DRAM + NOR flash

- Very limited amount of data (kilobytes-megabytes)
- Data is constantly written into DRAM but only transferred to NOR when there is an Event

Estimated Data Generation by SAE Level

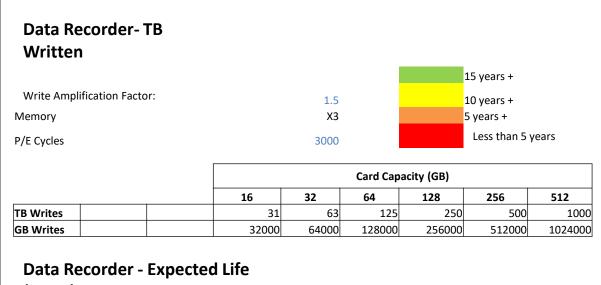
	Cameras	Radar Sensors	Ultrasound Sensors	LiDAR	Gigabytes Generated per hour (Low)	Gigabytes Generated per hour (High)
Level 0	0–1	0	0-4	0	0	280
Level 1	1–4	3–5	4–8	0	520	2,220
Level 2	4–8	5–8	8–12	0–2	1,700	6,000
Level 3	7–10	6–9	8–12	1–3	4,700	7,800
Level 4	9–16	11–21	8–12	3–5	6,700	16,700
Level 5	9–17	11–23	8–16	3–6	6,700	17,300

Note: Data assumes 24bpp.

Cameras will be the biggest driver of Data Higher resolution (4K/8K), higher frame rate will drive this even more.

Source: IDC, November 2019

Data Generated


Running Autopilot 2.5

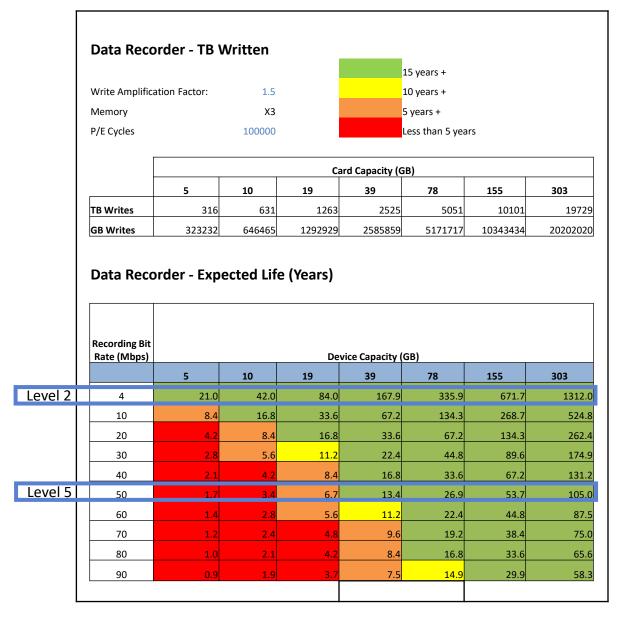
	H-Pixel	V-Pixel	Frames per Second	Megabits per Second	Gigabytes Generated per Hour
Front narrow, max distance: 820ft, 35-degree field of view	1,280	960	30	885.00	398
Front main, max distance: 260ft, 50-degree field of view	1,280	960	30	885.00	398
Front fisheye, max distance: 195ft, 150-degree field of view	1,280	960	30	885.00	398
Left pillar, 195ft, 80-degree field of view	640	480	30	221.00	100
Right pillar, 195ft, 80-degree field of view	640	480	30	221.00	100
Left repeater, 325ft, 60-degree field of view	640	480	30	221.00	100
Right repeater, 325ft, 60-degree field of view	640	480	30	221.00	100
Rear, max distance: 160ft, 140-degree field of view	1,160	720	30	601.00	271
Long-range radar				15.00	7
Long-range ultrasound x 12				0.12	0
Total				4,155.12	1,872

Note: Data assumes 24bpp.

Source: IDC, November 2019

Scenario1: Data Written to DRAM First

(Years)


	Recording Bit Rate	Recorded time per incident	Number of incidents a	Device Capacity (GB)					
			·	16	32	64	128	256	512
Level 2	4.155	30	100	21030	42061	84122	168243	336486	672973
	4.155	60	100	10515	21030	42061	84122	168243	336486
	4.155	90	100	7010	14020	28041	56081	112162	224324
	4.155	30	300	7010	14020	28041	56081	112162	224324
	4.155	60	300	3505	7010	14020	28041	56081	112162
	4.155	90	300	2337	4673	9347	18694	37387	74775
	4.155	30	600	3505	7010	14020	28041	56081	112162
	4.155	60	600	1753	3505	7010	14020	28041	56081
	4.155	90	600	1168	2337	4673	9347	18694	37387
Level 5	50	120	3000	15	29	58	117	233	466

Scenario 1:

- Data written to DRAM and then non-volatile storage when event occurs

 NAND Flash endurance exceeds Level 5 estimate data rate and supports over 3000 incidents a year recorded
2 minutes each for >15 years

Scenario 2: Continual Recording to NAND Flash

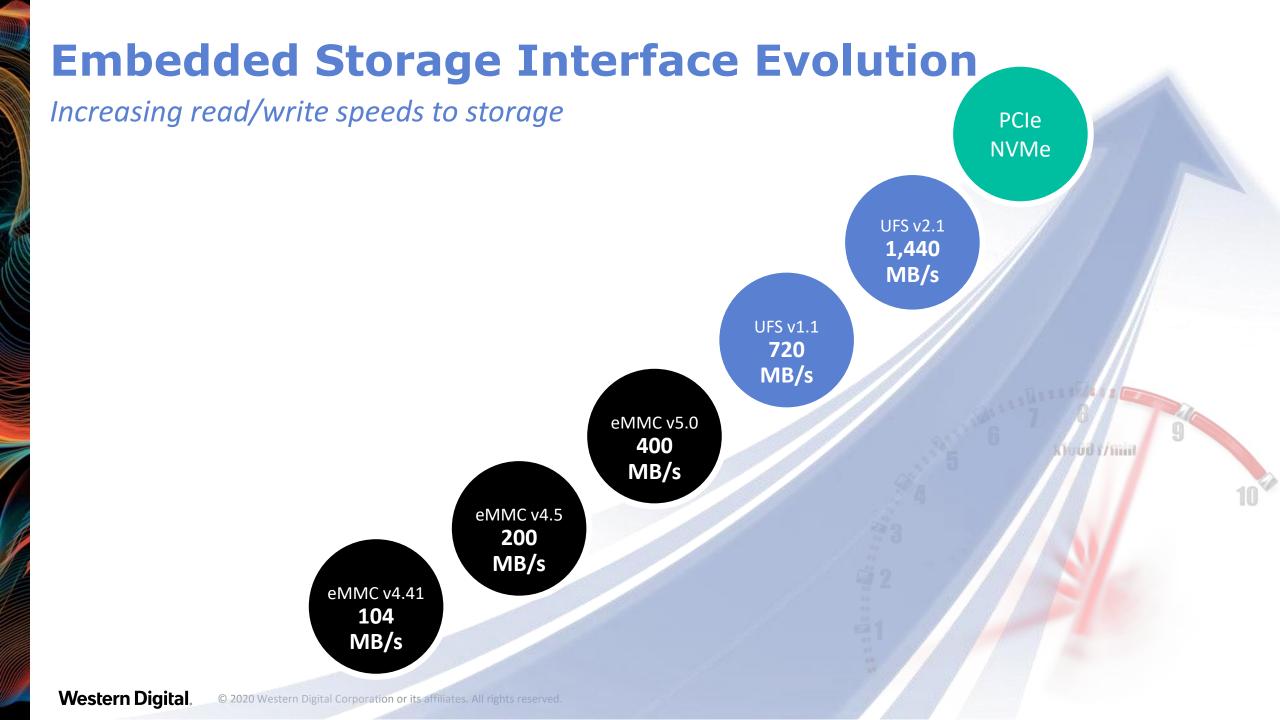
Scenario 2:

- Data written continuously directly to NAND flash storage

- NAND Flash endurance exceeds Level 5 estimate data rate and can support over 50Mbps for over 15 years

Considerations for Storage

- What type of data is stored
- What is the data stream bit rate
 - Cameras the largest drivers with higher resolution frame rates increasing
- What frequencies and length of events if only events recorded (Scenario 1)
- How long events need to be available in on-board storage
 - 1 week, 1 month, 6 months?


<u>Use cases matter</u>

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Questions

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

1

Overall Storage Requirements Changing

- Read/Write Intensive
- High Data retention
- Low to mid capacities
- Temperature not extreme
- Low performance

- Read/Write Intensive
- High data retention
- Mid to high capacities
 - Extreme temperature
- High performance

Western Digital. © 20020 Witessterm Digital Componention or its affiliates. All nights nessenced