Western Digital.

Data Storage Technology Overview

Russell A. Ruben ラッセル・ルーベン Director, Global Automotive

January 28, 2020

Agenda

- Western Digital Overview
- History and Trends of Automotive Storage
- Memory Types and Data Recording Scenarios
- Considerations of Storage

Western Digital Overview

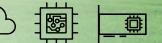
Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

A Powerful Platform

Home

Data Center

Auto


Compute

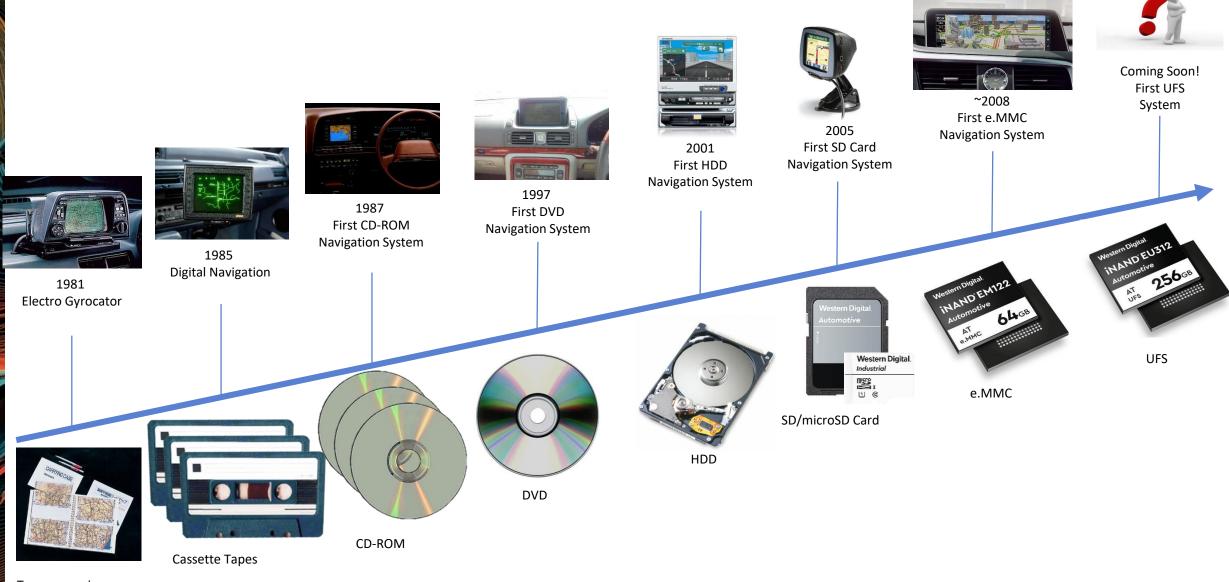
Mobile

Industrial

PORTFOLIO BREADTH

TECHNOLOGY ENGINE

~14,000 active patents


GLOBAL SCALE

62,000+ employees worldwide

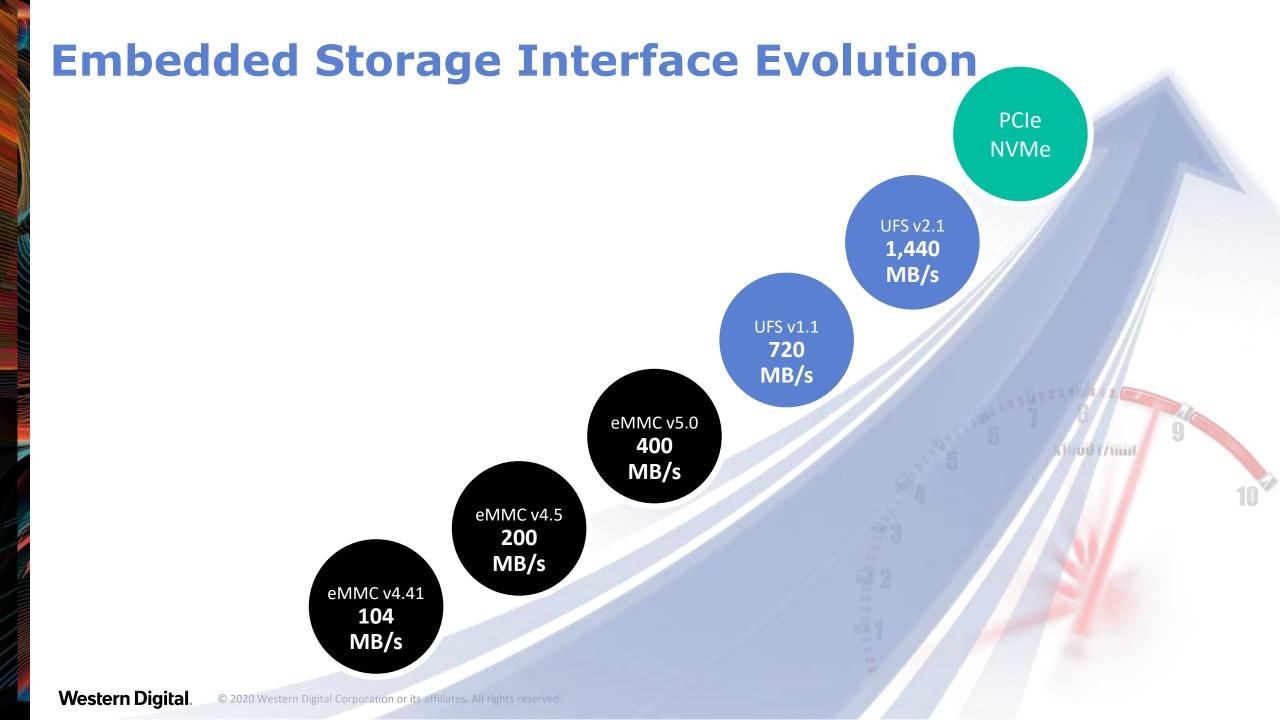
Western Digital. © 2019 Western Digital Corporation or its affiliates. All rights reserved All rights reserved.

44⁴

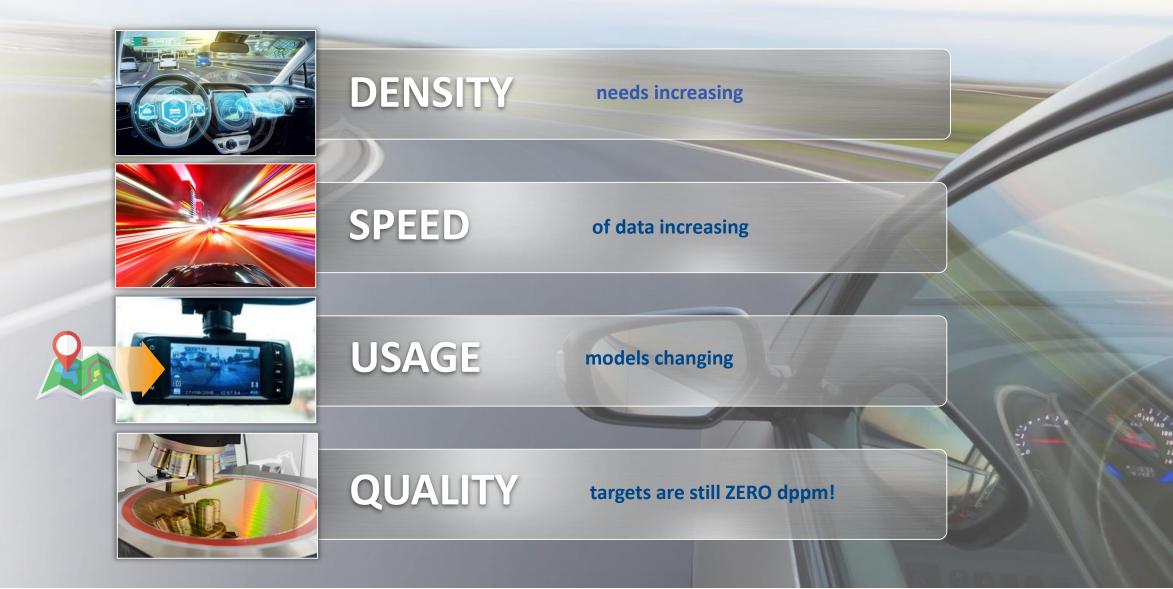
Evolution of Automotive Data Storage

Transparencies

Automotive Data Storage Today


Growth of NAND Requirements in the Car

3D/HD Mapping • Infotainment/Navigation • Digital Clusters • Telematics Gateways • V2V/V2I Comms • Autonomous Drive • Data Recorders



Western Digital

Hypervisor + multiple OS

Automotive Storage Trends

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Data Storage Enabling the Car of the Future

Changing Storage Usage Models

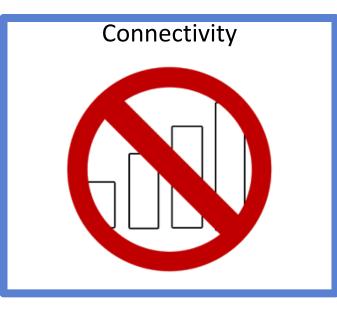
Faster Boot and Read Speeds

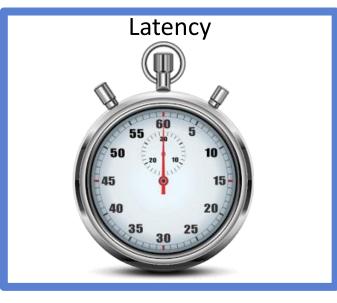
Operating systems and applications are getting more complex

Wider Temperature Environments

More powerful processors

New Write-intensive Workloads


Multi-camera recording, autonomous drive, data telematics


Automotive Data Storage Tomorrow

© 2020 Western Digital Corporation or its affiliates. All rights reserved.

In Car Storage v. Cloud Storage

Automotive Memory Types and Scenarios for Data Recording

Types of Memory

Each memory type has a different role

Volatile Memory

DRAM – Used for storing data that the processor is using. Very fast read/write capabilities

Non-volatile Memory

Magnetic

- HDD High data storage capacity, but not suited to applications with shock/vibe
- Tape High data storage capacity, but not suited to applications with shock/vibe

Flash

- NOR Low storage capacity and resilient to shock/vibe
- NAND High storage capacity and resilient to shock/vibe

Used in automotive today No longer used in automotive

Other memory products exist but are not commercially viable today

What is Used Today for Event Data Recorders

DRAM + NOR flash

- Very limited amount of data (kilobytes-megabytes)
- Data is constantly written into DRAM but only transferred to NOR when there is an Event

Data Generated

Running Autopilot 2.5

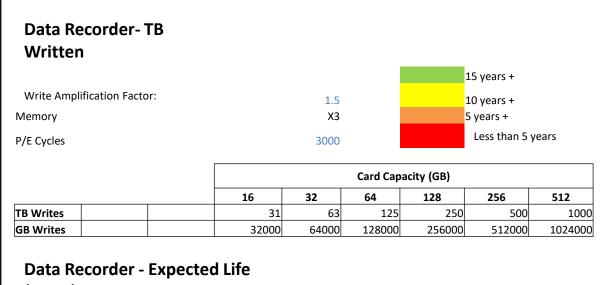
	H-Pixel	V-Pixel	Frames per Second	Megabits per Second	Gigabytes Generated per Hour
Front narrow, max distance: 820ft, 35-degree field of view	1,280	960	30	885.00	398
Front main, max distance: 260ft, 50-degree field of view	1,280	960	30	885.00	398
Front fisheye, max distance: 195ft, 150-degree field of view	1,280	960	30	885.00	398
Left pillar, 195ft, 80-degree field of view	640	480	30	221.00	100
Right pillar, 195ft, 80-degree field of view	640	480	30	221.00	100
Left repeater, 325ft, 60-degree field of view	640	480	30	221.00	100
Right repeater, 325ft, 60-degree field of view	640	480	30	221.00	100
Rear, max distance: 160ft, 140-degree field of view	1,160	720	30	601.00	271
Long-range radar				15.00	7
Long-range ultrasound x 12				0.12	0
Total				4,155.12	1,872

Note: Data assumes 24bpp.

Source: IDC, November 2019

Estimated Data Generation by SAE Level

	Cameras	Radar Sensors	Ultrasound Sensors	LiDAR	Gigabytes Generated per hour (Low)	Gigabytes Generated per hour (High)
Level 0	0–1	0	0-4	0	0	280
Level 1	1–4	3–5	4–8	0	520	2,220
Level 2	4–8	5–8	8–12	0–2	1,700	6,000
Level 3	7–10	6–9	8–12	1–3	4,700	7,800
Level 4	9–16	11–21	8–12	3–5	6,700	16,700
Level 5	9–17	11–23	8–16	3–6	6,700	17,300


Note: Data assumes 24bpp.

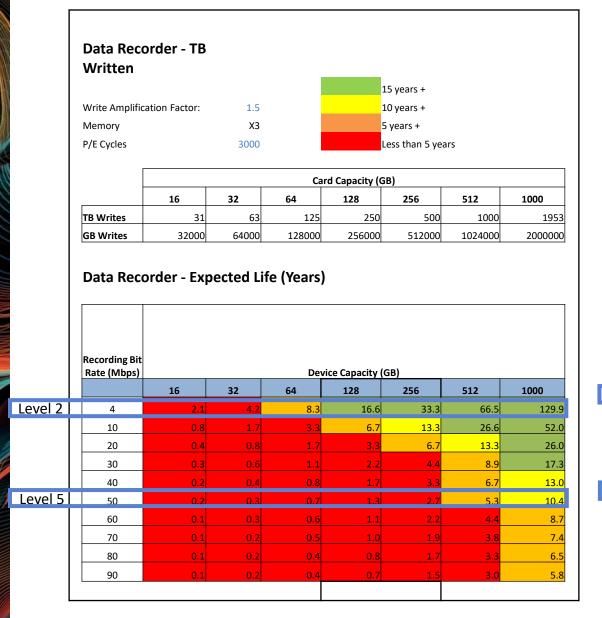
Cameras will be the biggest driver of Data Higher resolution (4K/8K), higher frame rate will drive this even more.

Source: IDC, November 2019

Western Digital. © 2020 Western Digital Corporation or its affiliates. All rights reserved.

Scenario1: Data Written to DRAM First

(Years)


	Recording Bit Rate	Recorded time per incident (seconds)	Number of incidents a			Device Ca	pacity (GB)		
		• •	•	16	32	64	128	256	512
Level 2	4.155	30	100	21030	42061	84122	168243	336486	672973
	4.155	60	100	10515	21030	42061	84122	168243	336486
	4.155	90	100	7010	14020	28041	56081	112162	224324
	4.155	30	300	7010	14020	28041	56081	112162	224324
	4.155	60	300	3505	7010	14020	28041	56081	112162
	4.155	90	300	2337	4673	9347	18694	37387	74775
	4.155	30	600	3505	7010	14020	28041	56081	112162
	4.155	60	600	1753	3505	7010	14020	28041	56081
	4.155	90	600	1168	2337	4673	9347	18694	37387
Level 5	50	120	3000	15	29	58	117	233	466

Scenario 1:

- Data written to DRAM and then non-volatile storage when event occurs

 NAND Flash endurance exceeds Level 5 estimate data rate and supports over 3000 incidents a year recorded
2 minutes each for >15 years

Scenario 2: Continual Recording to NAND Flash

				1	L5 years +		
Write Amplification Fac	1.5		1				
Memory		Х3		5	5 years +		
P/E Cycles		100000		Less than 5 years			
			Car	d Capacity (G	в)		
5		10	Car 19	rd Capacity (G 39	B) 78	155	303
5 TB Writes	316	10 631				155 10101	303 1972

Data Recorder - Expected Life (Years)

	Recording Bit Rate (Mbps)	Device Capacity (GB)								
		5	10	19	39	78	155	303		
Level 2	4	21.0	42.0	84.0	167.9	335.9	671.7	1312.0		
	10	8.4	16.8	33.6	67.2	134.3	268.7	524.8		
	20	4.2	8.4	16.8	33.6	67.2	134.3	262.4		
	30	2.8	5.6	11.2	22.4	44.8	89.6	174.9		
	40	2.1	4.2	8.4	16.8	33.6	67.2	131.2		
Level 5	50	1.7	3.4	6.7	13.4	26.9	53.7	105.0		
	60	1.4	2.8	5.6	11.2	22.4	44.8	87.5		
	70	1.2	2.4	4.8	9.6	19.2	38.4	75.0		
	80	1.0	2.1	4.2	8.4	16.8	33.6	65.6		
	90	0.9	1.9	3.7	7.5	14.9	29.9	58.3		

Factors That Impact Storage Capacity Required

- What data is stored
- Data stream bit rate
 - Cameras the largest drivers with higher resolution frame rates increasing
- Frequencies and length of events if only events recorded (Scenario 1)
- How long events need to be available in on-board storage
 - 1 week, 1 month, 6 months?
- Endurance how many terabytes of data can be written to a given capacity
 - The higher the capacity the more terabytes can be written

Overall Storage Requirements Changing

- Read/Write Intensive
- High Data retention
- Low to mid capacities
- Temperature not extreme
- Low performance

- Read/Write Intensive
- High data retention
- Mid to high capacities
 - Extreme temperature
- High performance