The European Commission's science and knowledge service

Joint Research Centre

Progress on thermal propagation testing

Andreas Podias, Akos Kriston, Andreas Pfrang, Vanesa Ruiz

January 2021

Outline

JRC experimental TP activity

Cell & material

<u>Comparison of initiation</u> <u>techniques</u>

- Trigger energy/ energy release
- Repeatability + ARC, DSC

Narrow down init. methods

Short stack

Analyse influential factors on the outcome

- Temperature, SOC...
- Cell orientation
- Cell separation

Module

Evaluate repeatability, reproducibility

- Check proposed test descriptions (also with testing bodies)
- Round robin tests
- Define pass/fail criteria

Pack, Vehicle

Verification and finalization of method

- Round robin tests
- Practical aspects
- Define robust evaluation methods (e.g. gas analysis)

Refine test description

3

Recap of previous findings

- Literature review and JRC workshop showed that the currently proposed description of TR initiation techniques in the GTR might not be fully suitable for TP assessment
- Simulation of thermal runaway showed that the resistance (R_{ext}/R_{int}) ratio and the surface-to-volume ratio have the highest impact on thermal runaway probability
- Initiation test campaign showed that TRIM method works reliably on different cell types (also nail penetration worked ok, but it was sensitive to boundary conditions)
- Inductive heating tests showed, that minimal energy input (~1%) was needed to initiate TR. Local initiation is sufficient to trigger TR

Evaluation of methods: if triggering TR is the purpose

Initiation method	Indicators						
	Influence of parameters	Energy insert	Locality	Readiness	Manipulation	Scores	
Heating	Low	High	No	Yes	High	2	
Steel nail	High	Low	Yes	Yes	High	3	
Ceramic nail	High	Low	Yes	Yes	High	3	
TRIM method	Low	Low	Yes	Yes	Low	5	
Inductive heating	Low	Low	Yes	No	ТВС	3	

Outline

Short stack test matrix: completed

Initiation method	Automotive 4	0 Ah pouch c	ells/stacks/mo	odules
Test type	2-cell stack#	5-cell stack	Module	Total
Ceramic nail	-	4*	-	4
TRIM method	3	12	2	17
Total	3	16	2	21

One 2-cell stack test was carried out with two layers of the HKO DEFENSOR-Flex[®] ML 17 material with a separation distance of ca. 8 mm.

* One of these four penetration tests was repeated due to experimental issues.

European Commission

Testing matrix 5 cell stack tests

Initiation Method	Insulation	n material
	None	HKO Defensor-Flex® ML (multilayer) 17
TRIM	6	6
Ceramic nail	2	2
Total	8	8

Different orientation of the stack, i.e.:

- cells standing up-right and
- cells lying flat on largest surface

was also assessed for TRIM (with/without ML 17)

Evaluation of 2-cell short stack tests / external rapid heating: impact of thermal insulation material

Farre tam

Commission

Evaluation of 2-cell short stack tests / external rapid heating: input parameters and findings' overview

TRIN (TRIM 2-cell stack experiments (50 °C/s ; T set=600 °C)			Max. Temperature (°C) max. Heater T3 T4 T5 T6 T7 T Ambient 712.70 585.90 885.20 565.59 16.90						Cell-to-cell TP time (s)
Insulation	Injected Energy (Wh)	Inj. Energy / Cell Energy content (%)	T max. Heater	Т3	T4	Τ5	Τ6	T7	T Ambient	Defined by the voltage drop < 2V
No	0.99	0.86	712.70	585.90	885.20	565.59			16.90	24
ML17	1.55	1.34	653.20	515.00	773.54	856.29	448.39		25.20	110
(2x) ML17	1.45	1.25	703.90	511.20	746.79	548.59	278.20	91.09	21.10	No TP

- Delay of propagation by addition of multi-layer material
- No cell-to-cell propagation in a 2-cell stack test with two layers of HKO's Defensor-Flex[®] ML 17 with a separation distance of ca. 8 mm

Evaluation of 2-cell short stack tests / external rapid heating

T7 heater

European Commission

15

Evaluation of 2-cell short stack tests / external rapid heating

Evaluation of short stack tests

Rapid heating (TRIM) test conditions and location of thermocouples // 5-cell stack without ML

Target temperature	Temperature increase rate	SoC
600°C	50°C/s	100%

European Commission

Evaluation of short stack tests External rapid heating

Evaluation of short stack tests External rapid heating

5-cell short stack/rapid heating (600 °C; 50 °C/s until event) Without ML With ML

5-cell stack / Input parameters and findings' overview

Cell-to-cell TP time-defined by Voltage drop < 2V

	Average Heating Power (W)	Heating Duration (s)	Heating Energy (Wh)	T max. Heater (°C)	Orientation	Insulation	1 → 2 (s)	2→3 (s)	3→4 (s)	4 → 5 (s)	Total TP time (s)	T max. Cell surface (°C)	Fire duration (s)	Mass loss (%)
	506	12.5	1.77	695	L.		122	97	112	112	443	870	No fire	35.18
	509	11.8	1.67	720	-righ	ML17	94	77	46	95	312	890	360	36.17
	1582	3.6	1.63	754	ing up		103	105	109	72	389	912	231 (long delay; not continuous)	35.29
	558	7.4	1.16	754	stand	No	22	30	27	31	110	912	156	36.19
	417	9.7	1.15	688	ellss		25	29	30	29	113	907	167	35.44
	312	12	1.05	703	, c		22	29	25	35	111	901	135	35.97
	419	10.1	1.2	675		MI 17	94	96	107	92	389	884	241 (long delay; not continuous)	35.10
	480	12.4	1.66	724	at		90	88	95	82	355	917	324 (long delay)	34.82
	437	11.4	1.40	729	ing fl		132	97	89	98	416	878	367 (delay)	36.28
	414	9.8	1.12	724	ells ly	NL-	22	28	31	29	110	917	139	35.52
	466	8.5	1.11	729	ö	NO	28	28	29	27	112	878	167	35.98
22	712	4.7	0.94	706			22	29	29	32	112	910	127 (small delay)	36.10

Evaluation of short stack tests

Main findings / external rapid heating

- Minimal energy input (0.8% 1.5% of cell's energy density) was needed to initiate TR
- Propagation times
 - Rather consistent for identical conditions (orientation, separation)
 - Delay of propagation by addition of multi-layer material
- Mass loss seem not influenced by the initiation method
- Mass loss seem not influenced by orientation and separation in rapid heating
- Occurrence of fire when **no separation** was present rather consistent for both orientations
- Occurrence of fire when separation was present not continuous No occurrence fire in one test (cells were standing up-right)

Evaluation of short stack tests

Ceramic nail penetration test conditions and location of thermocouples // 5-cell stack without ML

Evaluation of short stack tests Ceramic nail penetration tests // 5-cell stack with ML

Commission

5-cell short stack evaluation Penetration *vs.* **Rapid heating**; cells standing up-right **Influence of separation** (thermal barrier Defensor-Flex[®] ML 17)

 \rightarrow Progression of TP seems to be repeatable for both cases

 \rightarrow ML 17 slowed down TP (by a factor of about 4) for either of the initiation methods

5-cell short stack evaluation: External rapid heating Cells' orientation influence (with ML 17)

Cells standing upright (3 tests) Cells lying flat (3 tests)

→ Progression of TP seems to be repeatable and not influenced by the cells' orientation

European Commission

5-cell short stack evaluation: rapid heating Both orientations in the picture (12 tests) Influence of separation (thermal barrier Defensor-Flex[®] ML 17)

→ Progression of TP
 seems to be repeatable
 → ML 17 slowed down
 TP (by a factor of about
 4) for either of the
 orientations

Evaluation of short stack tests

Main findings (1/2)

- Initiation by rapid heating and ceramic nail penetration both trigger TR - no significant difference was found between their effects
- External rapid heating method is easy to use and stable localised, with minimal energy input (0.8% - 1.5% of cell's energy density) was needed to initiate TR
- Voltage drop is an indicator/evidence of TR occurrence
- Propagation times
 - Rather consistent for identical conditions (orientation, separation)
 - Delay of propagation by addition of multi-layer material
 - No cell-to-cell propagation in a 2-cell stack test with two layers of HKO's Defensor-Flex[®] ML 17 with a separation distance of ca. 8 mm

Evaluation of short stack tests

Main findings (2/2)

- Mass loss seem not influenced by the initiation method
- Mass loss seem not influenced by orientation and separation in rapid heating
- Occurrence of fire when **no separation** was present rather consistent for both orientations
- Occurrence of fire when separation was present not continuous
 No occurrence fire in one test (cells were standing up-right)

Outline

Evaluation of module tests External rapid heating (TRIM) // preparations 10s2p (ca. 3 kWh) module

32

Test conditions, parameters and manipulations

Number and location of TCs 30 +4 =34 TG

34 TCs in total, 30 of which be located in the centre of each cell surface (note, however, that the centre of the bottom surface of the initiation cell is covered by the heater). The initiation cell was equipped with 2 additional TCs at the front and back surface.

See hereafter...

Initiation Cell 1

Evaluation of module tests

External, rapid heating test conditions and location of initiation cell Target Temperature SoC

Module level testspre TPpost TP

European Commission

Test conditions and input test parametersAverage Heating Power (W)Heating Duration (s)Heating Energy (Wh)T max. Heater (°C)47512.21.62690			and eters	Ma	ain fin	dings
Average Heating Power (W)	Heating Duration (s)	Heating Energy (Wh)	T max. Heater (°C)	Total TP time (s)	T max. Cell surface (°C)	Fire duration (s)
475	12.2	1.62	690	505	970	1620
336	14.3	1.34	655	603	907	> 800

Module test / External rapid heating: Gas analysis (online FTIR 1/4)

Group of Substance	Substance	Formula	Reference*	Average	Maximum	Unit
			-	Conce	ntration	
	Vapor water	H2O	wet	2,12	5,03	Vol-%
			. 513			
Carbon Oxides	Carbon dioxide	CO2	dry	1,91	5,39	Vol-%
	Carbon monoxide	CO	dry	530,78	Maximum entration 5,03 5,39 1501,9 156,8 54,9 358,8 43,4 19,8 26,1 38,3 37,3 12,4 2,0 51,6 15,1 36,2 6,9 19,7	ppm
Short Hudrocarbons	Mathana	СНА	day	37 47	156.9	0000
Short Hydrocarbons	Acetylene	C2H2	dry	18.81	54.9	ppm
	Ethylene	C2H4	dry	49,30	358,8	ppm
	Ethane	C2H6	dry	4,18	43,4	ppm
	Propylene	C3H6	dry	3,06	19,8	ppm
	Propane	C3H8	dry	1,12	26,1	ppm
	1,3-Butadiene	C4H6	dry	3,39	38,3	ppm
	n-butane	C4H10	dry	1,32	37,3	ppm
	n-heptane	C7H16	dry	1,82	12,4	ppm
	Hexadecane	C16H34	dry	0,43	2,0	ppm
	Benzene	C6H6	dry	15,20	51,6	ppm
	Toluene	C7H8	dry	2,54	15,1	ppm
	Xylene-o	C8H10	dry	12,81	36,2	ppm
	Xylene-m	C8H10	dry	0,05	6,9	ppm
	Xylene-p	C8H10	dry	0,60	19,7	ppm
	Styrene	C8H8	dry	27,37	126,7	ppm

Gas composition was quantified with two complementary methods: Fourier transform infrared spectroscopy (FTIR) and Gas Chromatography

Test room volume: 100 m³

Delay time of sampling system: 25 s

Sampling rate: 7 samples/min

*Total gas volume with/without humidity

۰.

Module test / External rapid heating: Gas analysis (online FTIR 2/4)

Group of Substance	Substance	Formula	Reference*	Average	Maximum	Unit
	10. E	11) 20)		Conce	ntration	
Alcohols	Methanole	CH3OH	dry	9,23	124,7	ppm
	Ethanole	C2H5OH	dry	12,32	115,8	ppm
	Phenole	C6H5OH	dry	13,70	70,8	ppm
Aldehydes / Ketones	Formaldehyde	НСНО	dry	6,41	17,1	ppm
	Acetaldehyde	H3C2HO	dry	1,91	63,5	ppm
	Propionaldehyde	H5C3HO	dry	0,33	13,7	ppm
	Benzaldehyde	H5C7HO	dry	1,12	2,7	ppm
	Acrolein	H4C30	dry	2,67	7,4	ppm
	Acetone	H6C3O	dry	10,97	124,7 115,8 70,8 17,1 63,5 13,7 2,7 7,4 28,5 220,6 9,4 8,2 5,4 11,3	ppm
Acid gases	Hydrogen flouride	HF	dry	29,7	220,6	ppm
	Hydrogen chloride	HCI	dry	1,6	9,4	ppm
	Hydrogen cyanide	HCN	dry	2,4	8,2	ppm
	Formic acid	CHO2H	dry	0,8	5,4	ppm
	Acetic acid	C2H3O2H	dry	1,3	11,3	ppm
	Ethylacetate	C4H7O2H	dry	0,3	22,7	ppm

*Total gas volume with/without humidity

Module test / External rapid heating: Gas analysis (online FTIR 3/4)

Group of Substance	Substance	Formula	Reference*	Average	Maximum	Unit
		-		Concer	ntration	
Carbonates	Vinylene carbonate	C3H2O3	dry	0,7	5,1	ppm
	Ethylene carbonate	C3H4O3	dry	10,5	103,4	ppm
	Dimethyl carbonate	C3H6O3	dry	0,4	7,8	ppm
	Propylene carbonate	C4H6O3	dry	0,1	0,4	ppm
	Ethyl methyl carbonate	C4H8O3	dry	29,5	367,8	ppm
	Diethyl carbonate	C5H10O3	dry	13,2	140,7	ppm
Fluor gases	Carbonyl flouride	COF2	dry	0,3	2,0	ppm
	Fluoroform	CHF3	dry	0,0	0,3	ppm
	Tetrafluormethane	CF4	dry	5,0	85,6	ppm
	Difluoroethane	C2H4F2	dry	0,3	Maximum tration 5,1 103,4 7,8 0,4 367,8 140,7 2,0 0,3 85,6 3,2 39,8 21,5 2,0 1232,0	ppm
			dry			
Phosphor gases	Phosphine	PH3	dry	14,5	39,8	ppm
	Dimethyl phosphite	C2H7O3P	dry	1,0	21,5	ppm
	Triethyl phosphate	C6H15O4P	dry	0,1	Maximum tration 5,1 103,4 7,8 0,4 367,8 140,7 2,0 0,3 85,6 3,2 39,8 21,5 2,0 1232,0	ppm
	Sum TOC (Propane-eq.)		dry	371,7	1232,0	ppm

*Total gas volume with/without humidity

Many Toxic / Flammable substances were present/detected!

Module test / External rapid heating: Gas analysis (online FTIR 4/4)

Main findings (1/2)

- Minimal manipulation (some manipulation is needed, though)
- Initiation by rapid heating triggers TR
- Minimal energy input (1.2%, 1.4% of cell's energy density) was needed to initiate TR

Main findings (2/2)

Propagation times comparable but difficult to measure by voltage drop

(Voltage drop might be influenced by burning isolation of the sense wires)

- Occurrence of fire Yes, both tests
- Emission of smoke Yes, both tests

(also black smoke, making the fire not visible in one test out of two)

Outline

Conclusions and outlook

- External rapid heating is a good candidate initiation method that worked reliably, in a repeatable way in our experience at cell-, short stack- and module-level tests
- External rapid heating will be investigated further on packand vehicle-level
- Contribution by European OEMs to the test campaign preparation is acknowledged

Acknowledgement

JRC battery testing group

Ricardo Da Costa Barata Andreas Pfrang

Rene van der Aat

Vanesa Ruiz Marek Bielewski Natalia Lebedeva Adriano Antonelli Emilio Napolitano Andreas Podias Special thanks: Akos Kriston (now JRC Ispra)

For support rapid heating to NRC Dean MacNeil, Steven Recoskie

For abuse test execution to ZSW Harry Döring, Michael Wörz, Jan Endlicher, Sven Baum, Sebastian Trischler

For provision of HKO Defensor-Flex[®] ML 17 ulrich.stude@saint-gobain.com, carsten.stoeckmann@saintgobain.com, steffen.mielke@saintgobain.com

Not on the photo: Ibtissam Adanouj, Matthias Bruchhausen, Lucia Hegedusova, Stephan Hildebrand

European Commission

Relevant references

Project website https://ec.europa.eu/jrc/en/research-facility/battery-energy-storage-testing-safe-electric-transport

360° view of the battery testing laboratory at JRC https://visitors-centre.jrc.ec.europa.eu/virtual-tour/batterytesting/en/

Movie about battery testing at JRC <u>https://www.youtube.com/watch?v=6u2Gjiudcas</u>

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

Back-up slides

Evaluation of 2-cell short stack tests / external rapid heating / with ML 17 **T8 T**3 **T4 T5 T6 T7** Max. T 856.29 (°C) 653.20 515 773.54 448.39 25.20 6 1200 injected heat energy: 1.55 Wh V cell 1 5 1000 V cell 2 power 800 4 Σ [°C], voltage [S 600 —voltage_cell_1 temperature voltage_cell_2 -T3_cell_1_above_Heating_element 400 2 T4 cell 1 Material T5 Material cell 2 T6 cell 2 Endplate 1 200 T7 ambient T8 Heating element 0 0 3 0.5 1.5 2 2.5 3.5 4.5 5 5.5 6 6.5 7.5 8 9.5 Ellopean -0,5 7 4 time [min] Commission

Evaluation of 2-cell short stack tests / external rapid heating /

Test conditions, parameters and manipulations

Cells' orientationOriginal orientation in the car (i.e. cells lying flat on
largest surface).

Location of heater for triggering An end, bottom cell was triggered.

Number and location of TCs

A hole was created into the plastic bottom cover and replaced with a gypsum plate (GP) of the same size to accommodate heater and one thermocouple (TC)-the GP is glued to the bottom plastic cover using Förch PU power adhesive plus and tape.

34 TCs in total, 30 of which be located in the centre of each cell surface (note, however, that the centre of the bottom surface of the initiation cell is covered by the heater). The initiation cell was equipped with 2 additional TCs at the front and bac

Test conditions, parameters and manipulations

Groves were cut into the sides of the Al covers (see photo). Then a TC was inserted and glue (Förch PU power adhesive plus) was used to fix the TC. Holes were drilled into the sides of the plastic holders to insert a TC between two cells (for drilling cells were pushed aside using thin plates, see photo). The same glue is used to fix the TC and to close the hole (see photo 4-cell block with four installed TCs). Finally also two TCs are glued to the top plastic cover.

Test conditions, parameters and manipulations

A fuse box on one side of the module was removed to allow disassembly of the module and instrumentation. The fuse box was remounted. It was decided to also remount the two side end plate (EPs) (one of which covers the fuse box). The sense cables that are attached underneath those EPs were led through existing holes in the EPs. Torque for screws holding module together - a torque of 8 Nm for closing the screws on the module under test (this was carried out with a mechanical torque key).

Module ready for test.