Proposal for target performance of Car to Bicycle scenario

$11^{\text {th }}$ meeting of the Informal Working Group on AEBS for light vehicles 6-7 February 2020 in Paris, France

Japan Automobile Standards Internationalization Center

- The situation that a bicycle doesn't take avoidance action be able to consider as a typical case of accident
- The AEBS performance requirement that takes into account the deceleration of bicycle impose braking performance of the bicycle indirectly.
$\Rightarrow C 2 B$ requirements should start at the same value as the C2P requirements on 01 series.

Behavior of cyclist - Data of observation in an intersection

These data was measured by observing the intersection with a video camera.

This data shows the deceleration when the bicycle and the vehicle approach.

Bicycle was not completely stopped before an intersection.

The behavior of cyclist in the intersection $(\mathrm{n}=256)$

	Stop	Stop pedaling	Continue pedaling
Female	3%	76%	21%
Male	1%	75%	24%

Way of thinking

Apply the pedestrian scenario approach which is the same crossing scenario. This doesn't depend on the deceleration of the bicycle.
\Rightarrow bicycle conditions

- Speed: 15km/h
- Behavior: crossing with constant speed

Fig. 1 Critical-Area-Approach

Approach

The point of difference is to change the definition of the safety margin. The margin of pedestrian is 0.3 m . It seems about pedestrian thickness. But length of bicycle is much longer.
\Rightarrow It's reasonable to set the margin the bicycle length as 1.9 m

And the bicycle speed is faster than pedestrian , the driver should reacts before the bicycle enters the lane edge.
\Rightarrow change the critical point from vehicle edge to lane edge. Consider it as 0.75 m .
(It is based on 3.5 m as the lane width and 2 m as the vehicle width)

Xcritical $=$ road edge $1.75 m+$ margin $1.9 m=3.65 m$ Time for VUT $=3.65 \mathrm{~m} /(15 \mathrm{~km} / \mathrm{h} / 3.6)=0.876 \mathrm{~s}$

This result show that the performance is almost the same as C2C that TTC is 0.9 s .

Fig. 2 Critical-Area-Approach on bicycle study

Proposal of Performance

Table． 2 C2B maximum relative impact speed on best activation timing

C2B These value is same as C2P on 01 series		collision speed（km／h）			
		M1		N1	
		Maximum mass	Mass in running order	Maximum mass	Mass in running order
Activation TTC（s）		0.9	0.9	0.9	0.9
MAX G	（ $\mathrm{m} / \mathrm{s}^{2}$ ）	9	9	9	9
$\begin{aligned} & \text { Time to } 10 \mathrm{~m} / \mathrm{s} 2 \quad(\mathrm{~s}) \\ & \text { Jark }\left(\mathrm{m} / \mathrm{s}^{2} / \mathrm{s}\right) \end{aligned}$		$\begin{gathered} 0.66 \\ 15.15 \end{gathered}$	$\begin{gathered} 0.6 \\ 16.67 \end{gathered}$	$\begin{gathered} 0.73 \\ 13.69 \end{gathered}$	$\begin{gathered} 0.6 \\ 16.67 \end{gathered}$
Full avoidance speed（km／h）		40	42	38	42
相対速度 （km／h）	20	0	0	0	0
	25	0	0	0	0
	30	0	0	0	0
	35	0	0	0	0
	38	0	0	0	0
	40	0	0	10	0
	42	10	0	15	0
	45	15	15	20	15
	50	25	25	30	25
	55	30	30	35	30
	60	35	35	40	35

Thank you!

