

FUTURE INTERIOR AIR QUALITY MONITORING SYSTEMS

A REAL TIME TOOL TO MONITOR ONBOARD AIR QUALITY

Paris, 09/10.0<mark>3.2020, VIAQ-19th m</mark>aating-11

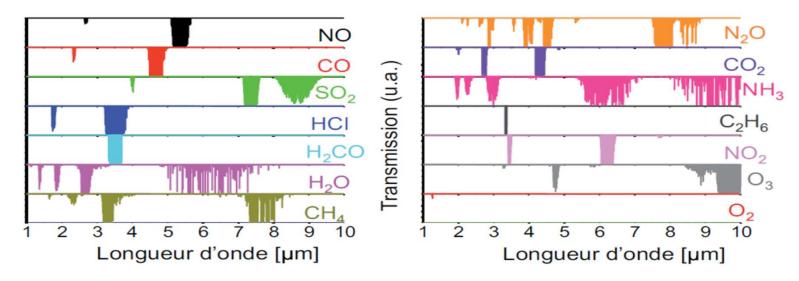
H.Richard

herve.richard@continental-corporation.com

Tel.: 00 33 5 61 19 50 38 Mob.: 00 33 6 13 51 75 86

Public

- 1 AQS ("AIR QUALITY SENSOR") CONCEPT
- 2 USE CASES
- 3 THE PROJECT
- 4 "STAGE 4" OPEN POINTS


THE CONCEPT

Optical spectroscopy

- ✓ molecular absorption spectroscopy based on Beer Lamber law
- √ absorption bands specific to target gas

Mid Infrared range (from 2.5um)

- ✓ relies on molecule "fundamental" vibration
- ✓ exhibits strongest absorption level: X10 to X100 vs NIR

- √ Multi gas measurement capabilities
- ✓ Specific measurement: system optical design / concept related

TARGET SPECIFICATION (ANALYTICS)

Gas	Range		Sensitivity (LLD)	Accuracy
CO (ppm)	2	500	2	+-1
CO2 (ppm)*	250	15000	250	+-125
NO2 (ppb)	20	400	20	+-10
NO (ppb)	20	800	20	+-10
Formaldéhyde (ppb)	40	500	40	+-20
O3 (ppb)	30	150	30	+-15
H20* (%)	0.1	5	0.1	TBD

^{*:} Absolute concentration LLD: Lower Limit of Detection

✓ Sensitivity values derived from Health WW recommendation related to long term exposure (1 year)

√*: VITESCO suggestion

TARGET SPECIFICATION (ANALYTICS) JUSTIFICATION

Air quality guideline values Air in populated areas Air inside a vehicle Pollutant GOST 33554-2015* RF* WHO* EU* USA* Korea* NO_2 , $\mu g/m^3$ 200 200 200 200 190 NO, $\mu g/m^3$ 400 400 undefined undefined undefined undefined $PM_{10}, \mu g/m^3$ undefined 300 50 $PM_{2.5}, \mu g/m^3$ undefined 25 160 $0_3, \mu g/m^3$ undefined 160 140 200 CO, mg/m³ 5 5 10 41 10 undefined 29 SO_2 , $\mu g/m^3$ 200 400 undefined 500 500 CH_2O , $\mu g/m^3$ 50 50 undefined undefined undefined undefined Benzene, µg/m3 undefined 300 undefined undefined *Exposure time 10 minutes 30 minutes 1 hour 8 hours Long term Short term

- ✓ From VIAQ 8th: still valid or to be updated? Agreed within automotive community?
- ✓ Are those thresholds health and drowziness related?

TARGET SPECIFICATION

Parameter	Number	
Ambiant temperature	-40°C< T amb < +85°C	
Relative Humidity	5%< H rel < 95%	
Voltage	9V < V < 16.5V	
Power	< 1W	
Interface	LIN or CAN	
Dimension	10cmX5cmX5cm	
Response time	< 1s	
Number of operating hours	10 000 H	
Number of measurement	100 000	
Lifespan	10 year	

- ✓ Consistant with onboard automotive application
- ✓ Power and response time are correlated to measurement accuracy and sensitivity

- 1 AQS ("AIR QUALITY SENSOR") CONCEPT
- 2 USE CASES
- 3 THE PROJECT
- 4 "STAGE 4" OPEN POINTS

REASON / MOTIVATION

√ Visible Trend in awareness of in cabin-air-quality

- ✓ No reliable measurement to monitor and compute an AQI "Air Quality Index"
- ✓ Reliability means:
 - √ Absolute
 - √ Specific
 - ✓ Sensitive

$$a_{i} = \left(\frac{\text{MAC}_{\text{CO amb}} \times \text{MAC}_{\text{CO w.zone}}}{\text{MAC}_{\text{i amb}} \times \text{MAC}_{\text{i w.zone}}}\right)^{\frac{1}{2}} = \sqrt{\frac{60}{\left(\text{MAC}_{\text{i amb}} \times \text{MAC}_{\text{i w.zone}}\right)}}$$

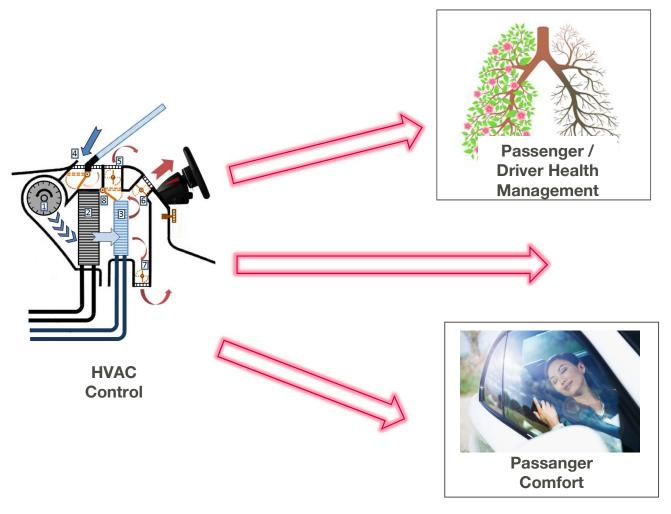
- ✓ Opportunity to take care of both internal and external sources of pollution and adpat to pollution pattern
- ✓ Opportunity to combine onboard existing sensing functionality (CO2 + Humidity) together with extra measurement features (gaseous pollutants)

HARMFULNESS DIFFERENTIATION

> Negative impact on:

Comfort / Safety

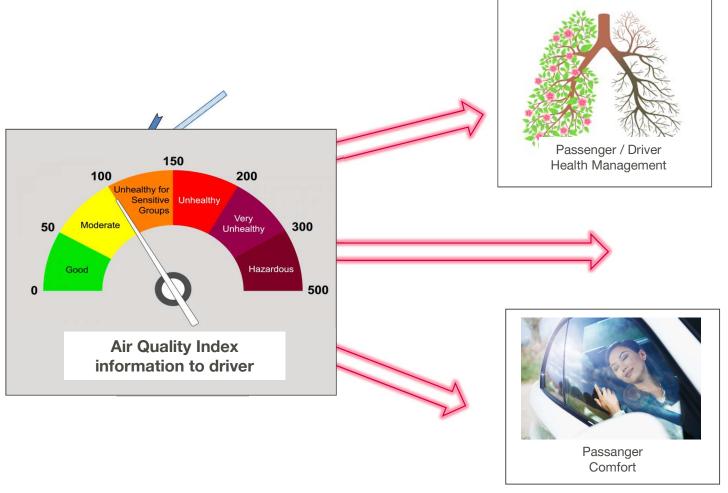
- > How: Short term exposure
 -) 10s to 1min
- > Effects
 - Bad feeling
 -) Impair driver cognitive skills, drowziness
 - Impair vision (windshield fogging)
- > Relevant compounds / parameters:
 -) CO2
 -) CO
 -) NO
 - **)** O3
 - > Relative Humidity (fogging)
 - > Bad odors molecule (toluene, NH3 and others??)


Health

- > How: Long term exposure and cumulative effect
 - Hours
- > Effects:
 - Asthma
 - Cardio vascular disease
 - Cancer
 - > Negative impact on central nervous system
- > Relevant compounds:
 - > CO2, CO, NO, O3
 -) NO2
 - > PM2.5 and smaller
 - > Some VOC / HC (toluene, formaldehyde and others??)

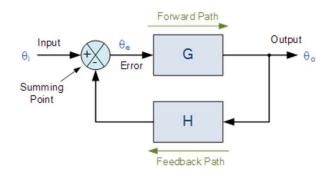
AQS USE CASES

« WHY USING A MULTI GAS SENSOR ?»



AQS USE CASES

« WHY USING A MULTI GAS SENSOR ?»



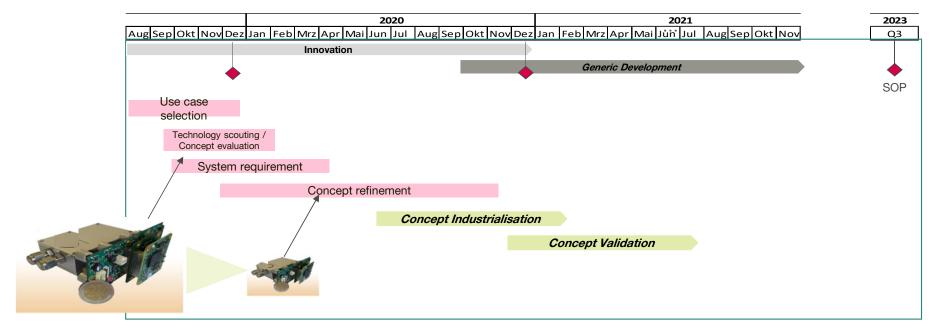
USE CASES: DETAILS (SUGGESTON)

« HOW USING A MULTI GAS SENSOR INFORMATION ?»

- > Sensor information can be an **entry point** to close loop air cleaning devices (In cabin sensor):
 - > Air fractional recirculation:
 - > Air Exchange Ratio (AER)
 - > Purification devices:
 - > Ionizer
 - > Activated carbon filters
 - > Others ??
- > Close loop on different output:
 - > Air Quality Index « Health » related
 - > Air Quality Index « Safety » related
 - > Power consumption (HVAC):
 - > HVAC compressor load vs circulation mode type (fresh air / recirculation)

USE CASES: DETAILS

« HOW USING A MULTI GAS SENSOR INFORMATION ?»


- > Real time monitoring of air purification devices:
 - > Air filters (activated carbons and others ??):
 - > Efficiency (breakthrough)
 - > Ionizer:
 - > O₃ production
 - > Others: ??

- 1 AQS ("AIR QUALITY SENSOR") CONCEPT
- 2 USE CASES
- 3 THE PROJECT
- 4 "STAGE 4" OPEN POINTS

DEVELOPMENT SCHEDULE

Available gases: N0, N02, C0, C02, NH3, Formadelhylde, Humidity SOP: Start Of Production

- 1 AQS ("AIR QUALITY SENSOR") CONCEPT
- 2 USE CASES
- 3 THE PROJECT
- 4 "STAGE 4" OPEN POINTS

KEY QUESTIONS TO BE ADRESSED WITHIN STAGE4

- > QUESTIONS ARE REQUESTED TO DRIVE SENSOR SPECIFICATION and DEVELOPMENT
 - > WHICH ARE THE MOST RELEVANT GASEOUS POLLUTANT TO BE CONTROLLED?
 - > WHICH ARE THE LOWEST CONCENTRATION TO BE CONTROLLED?
 - > DOES AQI (Air Quality Index) CALCULATION NEED TO BE UPDATED?

$$a_{i} = \left(\frac{\text{MAC}_{\text{CO amb}} \times \text{MAC}_{\text{CO w.zone}}}{\text{MAC}_{i \text{ amb}} \times \text{MAC}_{i \text{ w.zone}}}\right)^{\frac{1}{2}} = \sqrt{\frac{60}{\left(\text{MAC}_{i \text{ amb}} \times \text{MAC}_{i \text{ w.zone}}\right)}}$$

- > DOES AQI CALCULATION AGREED WITHIN SCIENTIFIC COMMUNITY AND BETWEEN VIAQ MEMBERS?
- > IS AN AQI DIFFERENTIATION BETWEEN HEALTH AND COMFORT/SAFETY RELEVANT?

LET'S DISCUSS!