

VIAQ-19-06

FUTURE INTERIOR AIR QUALITY MONITORING SYSTEMS

A REAL TIME TOOL TO MONITOR ONBOARD AIR QUALITY

Paris, 09/10.03.2020, VIAQ-19th maating-11 H.Richard <u>herve.richard@continental-corporation.com</u> Tel.: 00 33 5 61 19 50 38 Mob.: 00 33 6 13 51 75 86

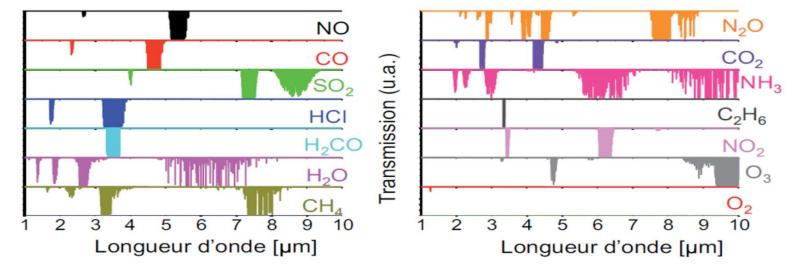
Public

1 AQS ("AIR QUALITY SENSOR") CONCEPT

2 USE CASES

3 THE PROJECT

AQS THE CONCEPT


3

Optical spectroscopy

- ✓ molecular absorption spectroscopy based on Beer Lamber law
- $\checkmark\,$ absorption bands specific to target gas

Mid Infrared range (from 2.5um)

- ✓ relies on molecule "fundamental" vibration
- ✓ exhibits strongest absorption level: X10 to X100 vs NIR

✓ Multi gas measurement capabilities
✓ Specific measurement: system optical design / concept related

AQS TARGET SPECIFICATION (ANALYTICS)

Gas	Range		Sensitivity (LLD)	Accuracy
CO (ppm)	2	500	2	+-1
CO2 (ppm)*	250	15000	250	+-125
NO2 (ppb)	20	400	20	+-10
NO (ppb)	20	800	20	+-10
Formaldéhyde (ppb)	40	500	40	+-20
O3 (ppb)	30	150	30	+-15
H20* (%)	0.1	5	0.1	TBD

*: Absolute concentration

4

LLD: Lower Limit of Detection

✓ Sensitivity values derived from Health WW recommendation related to long term exposure (1 year) \checkmark *: VITESCO suggestion

AQS TARGET SPECIFICATION (ANALYTICS) JUSTIFICATION

Air in populated areas Air inside a vehicle Pollutant GOST 33554-2015* RF* WHO* EU* USA* Korea* $NO_2, \mu g/m^3$ 200 200 200 200 190 NO, $\mu g/m^3$ 400 400 undefined undefined undefined undefined $PM_{10}, \mu g/m^3$ undefined 300 50 $PM_{2.5}, \mu g/m^3$ undefined 25 160 $0_{3}, \mu g/m^{3}$ undefined 160 140 200 CO, mg/m³ 5 5 10 41 10 undefined 29 $SO_2, \mu g/m^3$ 200 400 undefined 500 500 (VOC) $CH_2O, \mu g/m^3$ 50 50 undefined undefined undefined undefined Benzene, µg/m³ undefined 300 undefined undefined *Exposure time 10 minutes 30 minutes 1 hour 8 hours Long term Short term 0 LAMER

Air quality guideline values

✓ From VIAQ 8th: still valid or to be updated? Agreed within automotive community?
✓ Are those thresholds health and drowziness related?

AQS TARGET SPECIFICATION

6

Parameter	Number	
Ambiant temperature	-40°C< T amb < +85°C	
Relative Humidity	5%< H rel < 95%	
Voltage	9V < V < 16.5V	
Power	< 1W	
Interface	LIN or CAN	
Dimension	10cmX5cmX5cm	
Response time	< 1s	
Number of operating hours	10 000 H	
Number of measurement	100 000	
Lifespan	10 year	

 \checkmark Consistant with onboard automotive application

 \checkmark Power and response time are correlated to measurement accuracy and sensitivity

1 AQS ("AIR QUALITY SENSOR") CONCEPT

2 USE CASES

7

3 THE PROJECT

AQS REASON / MOTIVATION

Visible Trend in awareness of in cabin-air-quality.
Image: A complete measurement to monitor and compute an AQI "Air Quality Index"
No reliable measurement to monitor and compute an AQI "Air Quality Index"
Reliability means:

 Absolute
 Specific
 Sensitive

Image: A complete measurement to the complete and th

- Opportunity to take care of both internal and external sources of pollution and adpat to pollution pattern
- ✓ Opportunity to combine onboard existing sensing functionality (CO2 + Humidity) together with extra measurement features (gaseous pollutants)

AQS

HARMFULNESS DIFFERENTIATION

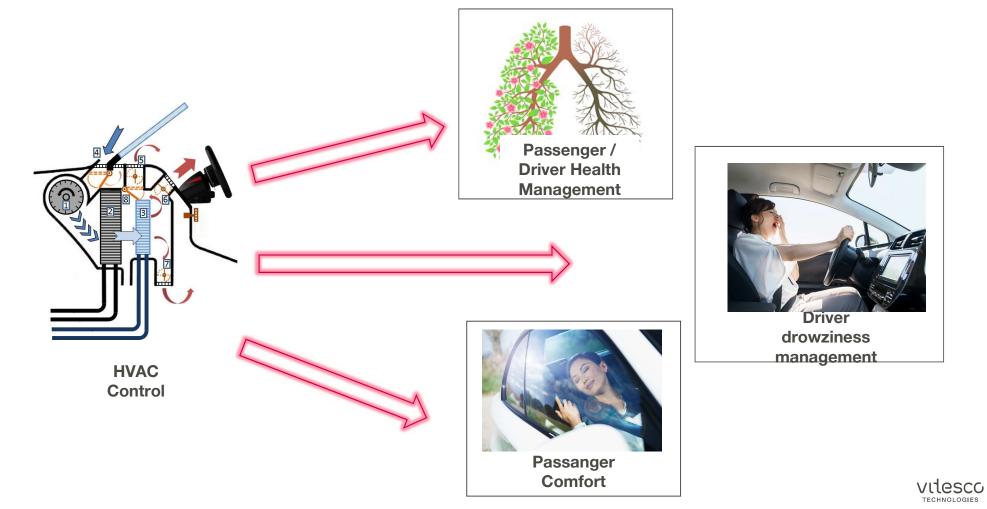
> Negative impact on:

Comfort / Safety

- > How: Short term exposure
 - > 10s to 1min
- > Effects
 - > Bad feeling
 - > Impair driver cognitive skills, drowziness
 - > Impair vision (windshield fogging)
- > Relevant compounds / parameters:
 -) CO2
 -) CO
 - > NO
 - **)** O3
 - > Relative Humidity (fogging)
 - > Bad odors molecule (toluene, NH3 and others??)

Health

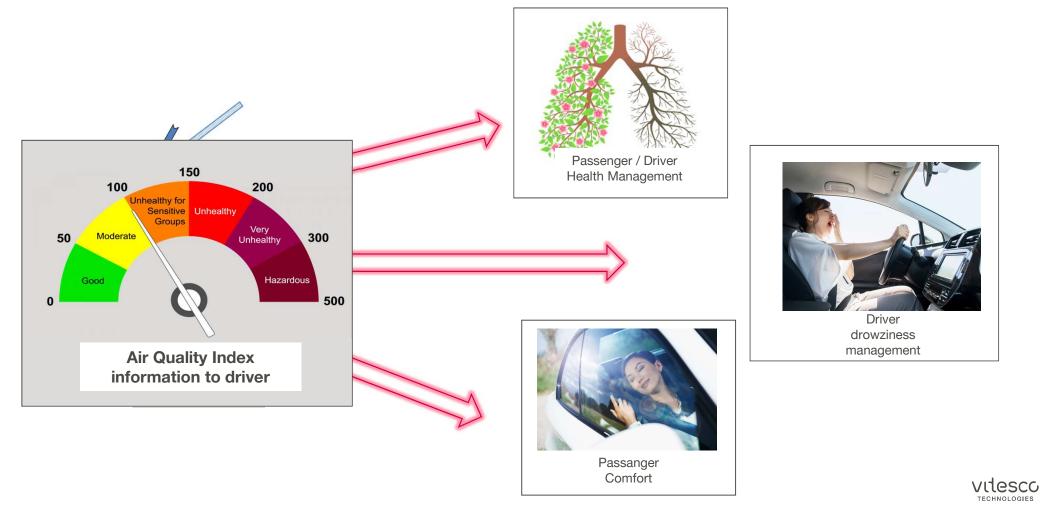
- > How: Long term exposure and cumulative effect
 - > Hours
- > Effects:
 - > Asthma
 - > Cardio vascular disease
 - > Cancer
 - > Negative impact on central nervous system
- > Relevant compounds:
 - > CO2, CO, NO, O3
 - > NO2
 - > PM2.5 and smaller
 - > Some VOC / HC (toluene, formaldehyde and others??)


llesc

TECHNOLOGIE

AQS USE CASES

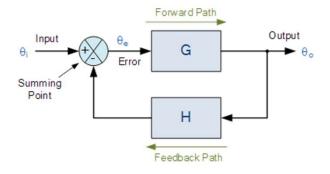
10


« WHY USING A MULTI GAS SENSOR ?»

AQS USE CASES

11

« WHY USING A MULTI GAS SENSOR ?»


AQS USE CASES: DETAILS (SUGGESTON)

« HOW USING A MULTI GAS SENSOR INFORMATION ?»

> Sensor information can be an **entry point** to close loop air cleaning devices (In cabin sensor):

- > Air fractional recirculation:
 - > Air Exchange Ratio (AER)
- > Purification devices:
 - > lonizer
 - > Activated carbon filters
 - > Others ??
- > Close loop on different output:
 - > Air Quality Index « Health » related
 - > Air Quality Index « Safety » related
 - > Power consumption (HVAC):

> HVAC compressor load vs circulation mode type (fresh air / recirculation)

AQS USE CASES: DETAILS

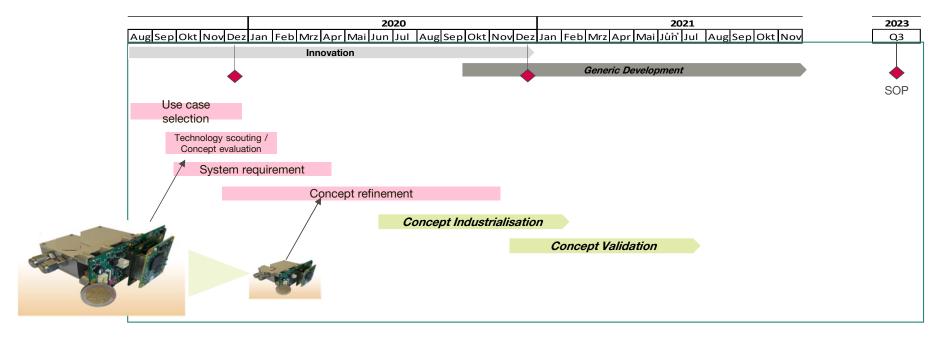
« HOW USING A MULTI GAS SENSOR INFORMATION ?»

> Real time monitoring of air purification devices:

- > Air filters (activated carbons and others ??):> Efficiency (breakthrough)
- > lonizer:

 $> O_3$ production

> Others: ??


1 AQS ("AIR QUALITY SENSOR") CONCEPT

2 USE CASES

3 THE PROJECT

AQS DEVELOPMENT SCHEDULE

Available gases: N0, N02, C0, C02, NH3, Formadelhylde, Humidity SOP: Start Of Production

1 AQS ("AIR QUALITY SENSOR") CONCEPT

2 USE CASES

3 THE PROJECT

AQS KEY QUESTIONS TO BE ADRESSED WITHIN STAGE4

> QUESTIONS ARE REQUESTED TO DRIVE SENSOR SPECIFICATION and DEVELOPMENT

> WHICH ARE THE MOST RELEVANT GASEOUS POLLUTANT TO BE CONTROLLED?

> WHICH ARE THE LOWEST CONCENTRATION TO BE CONTROLLED?

> DOES AQI (Air Quality Index) CALCULATION NEED TO BE UPDATED?

> DOES AQI CALCULATION AGREED WITHIN SCIENTIFIC COMMUNITY AND BETWEEN VIAQ MEMBERS?

> IS AN AQI DIFFERENTIATION BETWEEN HEALTH AND COMFORT/SAFETY RELEVANT?

LET'S DISCUSS!