

Development of a methodology for in-board assessment of the efficiency of air quality filters

QABINE 2 project - IWG, Paris, March 2020

Ambre DELATER, Sébastien FABLE, Brice BERTHELOT, Cécile RAVENTOS, Jessica QUERON and Olivier LE BIHAN

Contact: jessica.queron@ineris.fr

- \circ In lab
- Proposal of Qabine: *in situ* (highways in Paris)

Challenges

- 1. Instrumentation
- 2. Sampling point: speed
- 3. Sampling point: place, direction
- 4. Transfert efficiency: assessment, improvement
- 5. Test in situ

Ø

Challenge 1: Instrumentation Optical techniques

Most used approach: optical techniques

- o Easy-to-use
- Mobile
- Real time information (down to 1s)

Limitations:

- Calibration with « perfect » particles
- Volumetric mass: only 1 value, to be chosen
- Optical diameter
- \circ Cannot detect particles < 300 nm

Reference Method: gravimetry

Challenge 1: Instrumentation \rightarrow decision Reference method= gravimetry

impactor DEKATI

⇒Cascade impactor ⇒PM1, PM2.5, PM10 ⇒Weighing: EN12341

Nota: high flow (30 lpm)

Sampling points:

- Upstream the filter
- Indoor air in the car (« dowstream »)

Speed at the sampling point: In ambient air; in-tube Need for a STABLE speed in ambient air!

Challenge 2: outdoor sampling \rightarrow decision

Is it possible to stabilize the speed for upstream sampling?

Challenge 2: outdoor sampling

Is it possible to stabilize the speed for upstream sampling?

Speed measurement upstream the ventilation system, versus the wind speed - for 5 ventilation rate 3,5 3.19 2,87 3 2,76 2,76 2,73 -Pale 0 2,39 2,41 2.32 2,5 2.31 -Pale 1 2,14 upstream speed (km/h) 1.9 1.82 -Pale 2 2 1,8 1.67 --Pale 3 1.43 1,5 1,27 1.26 -Pale 4 0.92 1 0,5 0,30.03 0 20 40 60 80 100 120 140 Wind speed (km/h)

Wind tunnel tests

Results: for pale 1 to 4, below 80 km/h,

- The upstream wind speed is related to the car ventilation, <u>not to</u> the ambient air speed
- So it is possible to sample particles with a stable speed in the sampling environment

maîtriser le risque pour un développement durable

8

Challenge 3: sampling point and sampling direction

<u>Results</u>: for pale 2, at 80 km/h,

- $\circ~$ Same order of magnitude than measured speed
- Confirmation that the upstream wind speed is defined by car ventilation
- Selection of a sampling point out of the recirculation zone
- \circ Sampling direction // to the air flow

Particle losses - calculation

(Sampling efficiency) x (Transport efficiency) = Transfert efficiency

Optimisation

Efficiency versus diameter for a first sampling line

- $\circ~$ DEKATI on the passenger seat
- $\circ~$ Different diameters for the tubing
- $\circ~$ 3 changes of direction

11

Ø

Sensitivity study

pour un développement durable

maîtriser le risaue

Ø

%

optimisation

tude d'une nouvelle ligne de prélèvement

Challenge 4: definition/optimisation of the sampling line Efficiency versus diameter for the optimized sampling line

Challenge 5: in situ testing

Représentation graphique des efficacités de filtration des PM1 pour le filtre B en fonction de la concentration en PM1 en extérieur $\frac{1}{221/06}$ Filter A54 %59 %n = 14n = 6 $\frac{1}{100}$ $\frac{1}$	Particle 1055es			Average of the filtration efficiencyNumber of validated experiments			
Représentation graphique des efficacités de filtration des PM1 pour le filtre B en fonction de la concentration en PM1 en extérieur Filter A 54 % 59 % $n = 14$ $n = 6Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7Filter B$ 53 % 55 % $n = 14$ $n = 7$				PM1	PM2,5	PM1	PM2,5
Filter B 53 % 55 % $n = 14$ $n = 7$ Filter B 53 % 55% $n = 14$ $n = 7$ Représentation graphique des efficacités de filtration des PM1 pour le filtre A en fonction de la concentration en PM1 en extérieur Concentration en PM1 en extérieur ($\mu g/m^3$) Concentration en PM1 en extérieur ($\mu g/m^3$) Concentration PM1 elitre B movement des efficacités de filtration PM1 e Filtre B	Représentation graphi pour le filtre B en fonctio	Représentation graphique des efficacités de filtration des PM1 pour le filtre B en fonction de la concentration en PM1 en extérieur		54 %	59 %	n = 14	n = 6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80%		Filter B	53 %	55 %	n = 14	n = 7
$\frac{10}{25/06}$	$40\% \\ 10\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% \\ 20\% \\ 10\% $	100 80 80 80 80 80 80 80 80 80 80 80 80 8	Représe pour le filtr	ntation graphique re A en fonction d	e des efficacités de e la concentration	filtration des PM en PM1 en extér	
	Concentratio	n en PM1 en extérieur (μg/m ³)	tiltration de	% • 11/02		2/02 • •26/06	/06
			-20	10 20	Concentration	en PM1 en extérie	50 60 eur (μg/m ³)

maîtriser le risque pour un développement durable

Objective: Conception of a sampling line for the assessment of the filtration efficiency of the filter

Results: Methodology

- PLC Study + wind tunnel + CFD + car changes
- Validated for PM1 and PM2.5
- Tested on 2 filters

Limitations:

- Car changes => Professionnal
- method not validated for PM10
- PM2.5: uncorrected values
- Downstream sampling point: not at the outlet
- Upstream point: dedicated to filter efficiency meas., not to ambient air characterisation

Perspectives:

 \circ $\,$ To develop a specific downstream sampling point

Thanks for your attention!

The authors thank:

- Partner from automotive industry
- ADEME ٠
- French Ministry of Environment (DRC 30)

Ø

maîtriser le risque

