Proposal for a new UN Regulation on Event Data Recorder

Submitted by the Informal Working Group on Event Data Recorder and Data Storage System for Automated Driving

The text reproduced below was prepared by the Informal Working Group (IWG) on Event Data Recorder and Data Storage System for Automated Driving (EDR/DSSAD) to establish a new UN Regulation on Event Data Recorder (EDR) intended to be fitted to passenger cars and light duty vehicles concerning the minimum collection, storage, and retrievability of crash event data.

* In accordance with the programme of work of the Inland Transport Committee for 2020 as outlined in proposed programme budget for 2020 (A/74/6 (part V sect. 20) para 20.37), the World Forum will develop, harmonize and update UN Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.
I. Proposal

UN Regulation No. XXX

Uniform provisions concerning the approval of motor vehicles with regard to the Event Data Recorder

0. Foreword Introduction

0.1 The performance elements contained in this document provide uniform specifications for vehicles equipped with Event Data Recorders (EDRs) concerning the minimum collection, storage, and retrievability of motor vehicle crash event data. It also contains specifications for vehicle manufacturers to make tools and/or methods commercially available so that crash investigators and researchers can retrieve data from EDRs.

0.2 The purpose of these performance elements is to ensure that EDRs record, in a readily usable manner, data valuable for effective crash investigations and for analysis of safety equipment performance (e.g., advanced restraint systems). These data will help provide a better understanding of the circumstances in which crashes and injuries occur and will facilitate the development of safer vehicle designs.

1. Scope

1.1 These performance elements apply to all passenger cars and light duty vehicles (vehicle categories according to R.E.: M1, N1). [Should we use harmonized 58/98 agreement categories 1-1, and 2, with a gross vehicle mass (GVM) of 3,855 kilograms or less instead?]

1.2 This regulation shall not require additional systems or sensors to be fitted. If the vehicle is equipped with the sensor or system, then it is mandatory to record the data element in at least the specified format.

1.3 Retro-fitted or aftermarket hardware are out of scope.

1.4 Vehicle Identification Number (VIN) and associated vehicle details are out of scope of this Regulation and shall be subject to regional and national law.

1.5 Location data is out of scope of this Regulation and shall be subject to regional and national law.

1.6 The Data Storage System for Automated Driving is defined in the Automated Lane Keeping System (ALKS) Regulation XXXX. A copy of the DSSAD (to the extent it falls in scope of this regulation) may be used to fulfill EDR data element, but the time interval shall be limited according to Table XXXX.

1.7 This regulation shall not govern the retrieval and use of EDR data.

[Remark: reflect in the scope]
2. **Definitions**

For the purposes of this Regulation:

2.1 "ABS activity" means the anti-lock brake system (ABS) is actively controlling the vehicle’s brakes.

2.2 “Front air bag warning lamp status” means whether the warning lamp required by national air bag regulations (if any) is on or off.

2.3 “Capture” means the process of buffering EDR data in a temporary, volatile storage medium where it is continuously updated at regular time intervals.

2.4 “Delta-V, lateral” means the cumulative change in velocity, as recorded by the EDR of the vehicle, along the longitudinal axis, starting from crash time zero and ending at 0.25 seconds, recorded every 0.01 seconds.

2.5 “Delta-V, longitudinal” means the cumulative change in velocity, as recorded by the EDR of the vehicle, along the longitudinal axis, starting from crash time zero and ending at 0.25 seconds, recorded every 0.01 seconds.

2.6 “Deployment time, frontal air bag” means (for both driver and front passenger) the elapsed time from crash time zero to the deployment command or for multi-staged air bag systems, the deployment command for the first stage.

2.7 “Disposal” means the deployment command of the second (or higher, if present) stage of a frontal air bag for the purpose of disposing the propellant from the air bag device.

2.8 “End of event time” means the moment at which the cumulative change in velocity within a 20 ms time-period becomes 0.2 km/h or less, or the moment at which the crash detection algorithm of the air bag control unit meets event end criteria.
2.9 “Engine RPM” means:

(1) For vehicles powered by internal combustion engines, the number of revolutions per minute of the main crankshaft of the vehicle’s engine, and

(2) For vehicles not entirely powered by internal combustion engines, the number of revolutions per minute of the motor shaft at the point at which it enters the vehicle transmission gearbox.

(3) [For vehicles not powered by internal combustion engines at all, the number of revolutions per minute of the output shaft of the device supplying motive power].

2.10 “Engine throttle, percent full” means the driver requested acceleration as measured by the throttle position sensor on the accelerator control compared to the fully depressed position percentage ratio of the engine throttle opening.

2.11 “Event” means a crash or other physical occurrence that causes the trigger threshold to be met or exceeded, or an air bag to be deployed, whichever occurs first, as defined in section X. Note: this was removed from the “comparison chart” — Need to confirm if this is necessary.

2.12 “Event data recorder” (EDR) means a device or function in a vehicle that records the vehicle’s dynamic, time-series data during the time period just prior to a crash event (e.g., vehicle speed vs. time) or during a crash event (e.g., delta-V vs. time), intended for retrieval after the crash event. For the purposes of this definition, the event data do not include audio and video data. [should we delete “crash” throughout this EDR definition? It concerns an “event” here according to the definition of event above]

2.13 “Frontal air bag” means an inflatable restraint system that requires no action by vehicle occupants and is used to meet the applicable national frontal crash protection requirements.

“Generic scan-tool” means a vehicle- and manufacturer-independent external test equipment used for standardised off-board communication with the vehicle.

2.14 “Ignition cycle, crash” means the number (count) of power cycles applied to the recording device at the time when the crash event occurred since the first use of the EDR.

2.15 “Ignition cycle download” means the number (count) of power cycles applied to the recording device at the time when the data was downloaded since the first use of the EDR.

“Independent backend” is a backend server that is sovereign to the manufacturer, supplier, infrastructure operator, vehicle owner and prosecution authorities and is managed by an authority or organisation defined by national legislation. It stores and maintains the data elements transmitted by the EDR in accordance with national or regional legislation and makes the data available to authorised parties.
2.16 “Lateral acceleration” means the component of the vector acceleration of a point in the vehicle in the y-direction. The lateral acceleration is positive from left to right, from the perspective of the driver when seated in the vehicle facing the direction of forward vehicle travel.

2.17 “Longitudinal acceleration” means the component of the vector acceleration of a point in the vehicle in the x-direction. The longitudinal acceleration is positive in the direction of forward vehicle travel.

2.18 “Maximum delta-V, lateral” means the maximum value of the cumulative change in velocity, as recorded by the EDR, of the vehicle along the lateral axis, starting from crash time zero and ending at 0.3 seconds.

2.19 “Maximum delta-V, longitudinal” means the maximum value of the cumulative change in velocity, as recorded by the EDR, of the vehicle along the longitudinal axis, starting from crash time zero and ending at 0.3 seconds.

2.20 “Maximum delta-V, resultant” means the time-correlated maximum value of the cumulative change in velocity, as recorded by the EDR or processed during data download, along the vector-added longitudinal and lateral axes.

2.21 “Multi-event crash” means the occurrence of up to three events, the first and last of which begin not more than 5 seconds apart.

2.22 “Non-volatile memory” means the memory reserved for maintaining recorded EDR data in a semi-permanent fashion. Data recorded in non-volatile memory is retained after a loss of power and can be retrieved with EDR data extraction tools and methods.

2.23 “Normal acceleration” means the component of the vector acceleration of a point in the vehicle in the z-direction. The normal acceleration is positive in a downward direction and is zero when the accelerometer is at rest.

2.24 “Occupant position classification” means the classification indicating that the seating posture of a front outboard occupant (both driver and right-front passenger) is determined as right to left, from the perspective of the driver, the classification of the driver as not being of small stature.

2.25 “Occupant size classification” means, for front passenger, the classification of an occupant as an adult and not a child, and for the driver, the classification of the driver as not being of small stature. [text is slightly different that Part 563 but tries to keep the meaning]

2.33 “Pedestrian Impact Event” is a physical occurrence that causes a Pedestrian Impact trigger threshold to be met or exceeded, or any deployable protection device to be deployed, whichever occurs first. For the purposes of recording event data, only one Pedestrian Impact Event can be in progress at any given time.

"Over the air (OTA) interface" means an interface that can establish a wireless connection with the independent backend and allow data transfer thereto wirelessly instead of using a cable or other local connection.

Commented [AE19]: EC: Don’t want to use the word purchased, because some systems might be freely available or at cost, we should not unintentionally restrict the scope.

Commented [AE20]: EC: Not needed in the definitions, because this can be defined in the data elements table.

Commented [AE21]: EC: Not needed in the definitions, because this can be defined in the data elements table.

Commented [AE22]: China 02-20
WP29-179.XXX (EDR-DSSAD) Comparison table V1

Commented [AE23]: FSD 02-12 suggested “generic scan tool via the electronic vehicle interface”

Commented [AE24]: FSD 02-12

Commented [AE25]: EC: FSD suggestion was to ‘non-reversible’, but we suggest that reversible pedestrian protection should be included. Examples seen in the market from Daimler of mechanical pop-up bonnet that can be reset by the driver.

Commented [AE26]: FSD 02-12
2.26 “Pretensioner” means a device that is activated by a vehicle’s crash sensing system and removes slack from a vehicle safety belt system.

2.27 “Record” means the process of saving captured EDR data into a non-volatile device for subsequent retrieval.

“Recorded” means the data is recorded in non-volatile memory for the purpose of subsequent downloading.

“Rollover Event” is a physical occurrence in which the occupant protection control algorithm initiates deployment of a rollover occupant protection system. For purposes of recording event data, only one Rollover Event can be in progress at a given time.

2.28 “Safety belt status” means the feedback from the safety system that is used to determine that an occupant's safety belt (for both driver and right front passenger) is fastened or unfastened.

2.29 “Seat track position switch, foremost, status” means the status of the switch that is installed to detect whether the seat is moved to a forward position.

Sensor for detecting crash-impulses against the vehicle” means a device which is mandatory for vehicles that are due to mass-differences not able to detect collisions with vulnerable road users automatically by changes in acceleration or delta V.

2.30 “Service brake, on and off” means the status of the device that is installed in or connected to the brake pedal system to detect whether the pedal was pressed. The device can include the brake pedal switch or other driver-operated service brake control.

2.31 “Side air bag” means any inflatable occupant restraint device that is mounted to the seat or side structure of the vehicle interior, and that is designed to deploy in a side impact crash to help mitigate occupant injury and/or ejection.

2.32 “Side curtain/tube air bag” means any inflatable occupant restraint device that is mounted to the side structure of the vehicle interior, and that is designed to deploy in a side impact crash or rollover and to help mitigate occupant injury and/or ejection.

2.33 “Speed, vehicle indicated” means the vehicle speed indicated by a manufacturer-designated subsystem designed to indicate the vehicle’s ground travel speed during vehicle operation.

2.34 “Stability control” means any device that complies with national, “Electronic stability control systems”.

2.35 “Steering input” means the angular displacement of the steering wheel measured from the straight-ahead position (position corresponding to zero average steer angle of a pair of steered wheels).

2.36 “Suppression switch status” means the status of the switch indicating whether an air bag suppression system is on or off.

2.37 “Time from event 1 to 2” means the elapsed time from time zero of the first event to time zero of the second event.
2.38 “Time, maximum delta-V, lateral” means the time from crash time zero to the point where the maximum value of the cumulative change in velocity is found, as recorded by the EDR, along the lateral axis.

2.39 “Time, maximum delta-V, longitudinal” means the time from crash time zero to the point where the maximum value of the cumulative change in velocity is found, as recorded by the EDR, along the longitudinal axis.

2.40 “Time, maximum delta-V, resultant” means the time from crash time zero to the point where the maximum delta-V resultant occurs, as recorded by the EDR or processed during data download.

2.41 “Time to deploy, pretensioner” means the elapsed time from crash time zero to the deployment command for the safety belt pretensioner (for both driver and right front passenger).

2.42 “Time to deploy, side air bag/curtain” means the elapsed time from crash time zero to the deployment command for a side air bag or a side curtain/tube air bag (for both driver and right front passenger).

2.43 “Time to first stage” means the elapsed time between time zero and the time when the first stage of a frontal air bag is commanded to fire.

2.44 “Time to nth stage” means the elapsed time from crash time zero to the deployment command for the nth stage of a frontal air bag (for both driver and right front passenger).

2.45 “Time zero” means whichever of the following occurs first:

(1) For systems with “wake-up” air bag control systems, the time at which the occupant restraint control algorithm is activated; or

(2) For continuously running algorithms,

 (i) The first point in the interval where a longitudinal, cumulative delta-V of over 0.8 km/h is reached within a 20 ms time period; or

 (ii) For vehicles that record “delta-V, lateral,” the first point in the interval where a lateral, cumulative delta-V of over 0.8 km/h is reached within a 5 ms time period; or

(3) Deployment of a non-reversible deployable restraint. An air bag deployment [non-reversible deleted according to earlier discussions in IWG]. We may have to see how to include non-airbag deployable safety systems (e.g., pop up bonnets for pedestrian safety)

2.46 “Trigger threshold” means a change in vehicle velocity, or other signal input, as defined in section X, in the longitudinal direction, that equals or exceeds 8 km/h within a 150 ms interval. For vehicles that record “delta-V, lateral,” trigger threshold means a change in vehicle velocity in either the longitudinal or lateral direction that equals or exceeds 8 km/h within a 150 ms interval or a change in longitudinal or lateral acceleration, which is able to determine an impact to the vehicle.

2.47 “Vehicle roll angle” means the angle between the vehicle y-axis and the ground plane.

2.48 “Volatile memory” means the memory reserved for buffering of captured EDR data. The memory is not capable of retaining data in a semi-permanent fashion. Data captured in volatile memory is continuously overwritten and is
not retained in the event of a power loss or retrievable with EDR data extraction tools.

2.49 “X-direction” means in the direction of the vehicle’s X-axis, which is parallel to the vehicle’s longitudinal centerline. The X-direction is positive in the direction of forward vehicle travel.

2.50 “Y-direction” means in the direction of the vehicle’s Y-axis, which is perpendicular to its X-axis and in the same horizontal plane as that axis. The Y-direction is positive from left to right, from the perspective of the driver when seated in the vehicle facing the direction of forward vehicle travel.

2.51 “Z-direction” means in the direction of the vehicle’s Z-axis, which is perpendicular to the X and Y-axes. The Z-direction is positive in a downward direction.

3. Application for approval

3.1. The application for approval of a vehicle type with regard to the EDR shall be submitted by the vehicle manufacturer or by his authorized representative.

3.2. It shall be accompanied by the documents mentioned below in triplicate:

3.2.1. A description of the vehicle type with regard to the items specified in paragraph 5 below, in particular related to the location of the EDR in the vehicle, the triggering parameter, storing capacity and the resistance to high deceleration and mechanical stress of a severe impact.

3.2.2. The data and data format stored in the EDR.

3.2.3. Instructions for retrieving data from the EDR.

3.3. A vehicle representative of the vehicle type to be approved shall be submitted to the Technical Service conducting the approval tests.

3.4. The Type Approval Authority shall verify the existence of satisfactory arrangements for ensuring effective checks on conformity of production before type-approval is granted.

4. Approval

4.1. If the vehicle type submitted for approval pursuant to this Regulation meets the requirements of paragraph 5 below, approval of that vehicle type shall be granted.

4.2. An approval number shall be assigned to each type approved. Its first two digits (at present 00 for the Regulation in its original form) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party shall not assign the same number to the same vehicle type equipped with another type of EDR, or to another vehicle type.

4.3. Notice of approval or of extension or of refusal or of withdrawal of approval of a vehicle type pursuant to this Regulation shall be communicated to the Contracting Parties to the Agreement applying this Regulation by means of a form conforming to the model in Annex 1 to this Regulation and
documentation supplied by the applicant being in a format not exceeding A4 (210 x 297mm) and on an appropriate scale or electronic format.

4.4. There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation, an international approval mark conforming to the model described in Annex 3, consisting of either:

4.5.1. A circle surrounding the letter “E” followed by:
(a) the distinguishing number of the country which has granted approval;¹ and
(b) the number of this Regulation, followed by the letter “R”, a dash and the approval number to the right of the circle prescribed in this paragraph;
or

4.5.2. An oval surrounding the letters “UI” followed by the Unique Identifier.

4.6. If the vehicle conforms to a vehicle type approved under one or more other UN Regulations annexed to the Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in paragraph 4.5. above need not be repeated. In such a case, the UN Regulation and approval numbers and the additional symbols shall be placed in vertical columns to the right of the symbol prescribed in paragraph 4.5. above.

4.7. The approval mark shall be clearly legible and be indelible.

4.8. The approval mark shall be placed close to or on the vehicle data plate.

5 Specifications

5.1 Event definitions

Events shall be defined as in SAE J1698-1 section 4. The events shall only be recorded for vehicles equipped with the relevant systems.

5.1.2. The following additions shall be required:

5.1.2.1. A cyclist event shall be recorded if it meets the thresholds for a pedestrian impact event.

5.1.2.2. The beginning of a Pedestrian Impact Event (time zero) is defined by a reversible pedestrian protection system deployment. This may include a cyclist event if that causes a th

5.1.2.3. The beginning of an Event (time zero) is defined by an activation of an Autonomous Emergency Braking System.

5.7 Performance specifications for vehicles equipped with an EDR include data elements, data format, data capture, and crash test performance and survivability.

5.2 Data elements

5.2.1 Data elements required that are mandatory if equipped for all vehicles. Each vehicle equipped with an EDR shall record all of the data elements listed in Table 1, during the interval/time and at the same rate specified.

Table 1: Content of this paragraph to be discussed in Tokyo/Washington.

<table>
<thead>
<tr>
<th>Data element</th>
<th>Recording interval/time(^1) (relative to time zero)</th>
<th>Data sample rate (samples per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta-V, longitudinal</td>
<td>0 to 250 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>100</td>
</tr>
<tr>
<td>Maximum delta-V, longitudinal</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Time, maximum delta-V</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Speed, vehicle indicated</td>
<td>-5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Engine throttle, % full (or accelerator pedal, % full)</td>
<td>-5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Service brake, on/off</td>
<td>-5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Ignition cycle, crash</td>
<td>-1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Ignition cycle, download</td>
<td>At time of download(^3)</td>
<td>N/A</td>
</tr>
<tr>
<td>Safety belt status, driver</td>
<td>-1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag warning lamp, on/off(^2)</td>
<td>-1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver.</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver.</td>
<td>Event</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^1\) Recording interval/time relative to time zero

\(^2\) On/off

\(^3\) At time of download

Commented [AE40]: Can delete this?

Commented [AE41]: EC: Can we use an A4 or A3 landscape page to consolidate the tables 1–3 into one table only – as per the data elements table in excel that we’ve all been using? EC: Comments as per the data elements table, so not recorded individually here. These tables must be updated to match the final version of the data elements table as agreed by the group.

EC: Recommend that the data elements table should be moved to an Annex, it is too long to sit in the body text of the regulation.

Commented [AE42]: EC: Suggest move to Annex. Suggest add columns for range, accuracy, and resolution. EC: Comments as per the data elements table, so not recorded individually here. These tables must be updated to match the final version of the data elements table as agreed by the group.
1 Pre-crash data and crash data are asynchronous. The sample time accuracy requirement for pre-crash time is -0.1 to 1.0 sec (e.g., T = -1 would need to occur between -1.1 and 0 seconds.)

2 The frontal air bag warning lamp is the readiness indicator specified in national air bag requirements, and may also illuminate to indicate a malfunction in another part of the deployable restraint system.

3 The ignition cycle at the time of download is not required to be recorded at the time of the crash, but shall be reported during the download process.

5.2 Data elements **required that are mandatory if equipped** for vehicles under specified conditions. Each vehicle equipped with an EDR shall record each of the data elements listed in column 1 of Table 2 for which the vehicle meets the condition specified in column 2 of that table, during the interval/time and at the sample rate specified in that table.

<table>
<thead>
<tr>
<th>Data element name</th>
<th>Condition for requirement</th>
<th>Recording interval/time</th>
<th>Data sample rate (per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral acceleration</td>
<td>If recorded</td>
<td>0–250 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>100</td>
</tr>
<tr>
<td>Longitudinal acceleration</td>
<td>If recorded</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal acceleration</td>
<td>If recorded</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Delta-V, lateral</td>
<td>If recorded</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum delta-V, lateral</td>
<td>If recorded</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Time maximum delta-V, lateral</td>
<td>If recorded</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Time for maximum delta-V, resultant</td>
<td>If recorded</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Commented [AE43]: EC: Because the group agreed all elements are “mandatory if equipped” so we can delete this column.

Commented [AE44]: EC: All elements are mandatory if equipped, which means Table 2 should be deleted entirely.
EC: Comments as per the data elements table, so not recorded individually here. These tables must be updated to match the final version of the data elements table as agreed by the group.
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Time Range</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine rpm</td>
<td>5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle roll angle</td>
<td>1.0 up to 5.0 sec</td>
<td>10</td>
</tr>
<tr>
<td>ABS activity (engaged, non-engaged)</td>
<td>5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Stability control (on, off, or engaged)</td>
<td>5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Steering input</td>
<td>5.0 to 0 sec</td>
<td>2</td>
</tr>
<tr>
<td>Safety belt status, right front passenger (buckled, not buckled)</td>
<td>1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag suppression switch status, right front passenger (on, off, or auto)</td>
<td>1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, driver</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, right front passenger</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, driver, Y/N (whether the nth stage deployment was for occupant restraint or propellant disposal purposes)</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, right front passenger, Y/N (whether the nth stage deployment was for occupant restraint or propellant disposal purposes)</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, driver</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, right front passenger</td>
<td>Event</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Side curtain/tube air bag deployment, time to deploy, driver side. If recorded Event N/A

Side curtain/tube air bag deployment, time to deploy, right side. If recorded Event N/A

Pretensioner deployment, time to fire, driver. If recorded Event N/A

Pretensioner deployment, time to fire, right front passenger. If recorded Event N/A

Seat track position switch, foremost, status, driver. If recorded -1.0 sec N/A

Seat track position switch, foremost, status, right front passenger. If recorded -1.0 sec N/A

Occupant size classification, driver. If recorded -1.0 sec N/A

Occupant size classification, right front passenger. If recorded -1.0 sec N/A

Occupant position classification, driver. If recorded -1.0 sec N/A

Occupant position classification, right front passenger. If recorded -1.0 sec N/A

1 Pre-crash data and crash data are asynchronous. The sample time accuracy requirement for pre-crash time is -0.1 to 1.0 sec (e.g., T = -1 would need to occur between -1.1 and 0 seconds.)

2 ‘If recorded’ means if the data is recorded in non-volatile memory for the purpose of subsequent downloads.

3 ‘Vehicle roll angle’ may be recorded in any time duration; -1.0 sec to 5.0 sec is suggested.

4 List this element n - 1 times, once for each stage of a multi-stage air bag system.

5.2.3 Data format [To be discussed in TokyoWashington DC]

5.2.3.1 The data elements listed in Tables 1 and 2, as applicable, shall be reported in accordance with the range, accuracy, and resolution specified in Table 3.

Table 3.

Reported data element format

<table>
<thead>
<tr>
<th>Data element</th>
<th>Minimum range</th>
<th>Accuracy</th>
<th>Resolution</th>
</tr>
</thead>
</table>

Commented [AE45]: EC: Table 3 can be combined with table 1 if the columns for range, accuracy, and resolution are added to Table 1. It will be a long table, but simpler to understand and we are already used to looking at this format. EC: Comments as per the data elements table, so not recorded individually here. These tables must be updated to match the final version of the data elements table as agreed by the group.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>At option of manufacturer.</th>
<th>At option of manufacturer.</th>
<th>At option of manufacturer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral acceleration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal acceleration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Acceleration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal delta-V</td>
<td>-100 km/h to + 100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Lateral delta-V</td>
<td>-100 km/h to + 100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Maximum delta-V, longitudinal</td>
<td>-100 km/h to + 100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Maximum delta-V, lateral</td>
<td>-100 km/h to + 100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Time, maximum delta-V, longitudinal</td>
<td>0–300 ms, or 0-End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Time, maximum delta-V, lateral</td>
<td>0–300 ms, or 0-End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Time, maximum delta-V, resultant</td>
<td>0–300 ms, or 0-End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Vehicle Roll Angle</td>
<td>-1080 deg to +1080 deg.</td>
<td>±10%</td>
<td>10 deg.</td>
</tr>
<tr>
<td>Speed, vehicle indicated</td>
<td>0 km/h to 200 km/h</td>
<td>±1 km/h</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Engine throttle, percent full</td>
<td>0 to 100%</td>
<td>±5%</td>
<td>1%</td>
</tr>
<tr>
<td>Engine rpm</td>
<td>0 to 10,000 rpm</td>
<td>±100 rpm</td>
<td>100 rpm.</td>
</tr>
<tr>
<td>Service brake</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>ABS activity</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Stability control</td>
<td>On, Off, or Engaged</td>
<td>N/A</td>
<td>On, Off, or Engaged.</td>
</tr>
<tr>
<td>Steering input</td>
<td>-250 deg CW to + 250 deg CCW</td>
<td>±5%</td>
<td>±1%.</td>
</tr>
<tr>
<td>Feature</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ignition cycle, crash</td>
<td>0 to 60,000</td>
<td>±1 cycle</td>
<td>1 cycle.</td>
</tr>
<tr>
<td>Ignition cycle, download</td>
<td>0 to 60,000</td>
<td>±1 cycle</td>
<td>1 cycle.</td>
</tr>
<tr>
<td>Safety belt status, driver</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Safety belt status, right front passenger.</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Frontal air bag warning lamp</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Frontal air bag suppression switch status,</td>
<td>On, Off, or Auto</td>
<td>N/A</td>
<td>On, Off, or Auto.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy/first stage, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy/first stage, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, driver.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, right front passenger.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, driver side.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, right side.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, right front</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Notes</td>
<td>Status</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, driver.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, right front passenger.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Occupant size classification, driver.</td>
<td>5th percentile female or larger</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Occupant size classification, right front passenger.</td>
<td>Child</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Occupant position classification, driver.</td>
<td>Out of position</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Occupant position classification, right front passenger.</td>
<td>Out of position</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Multi-event, number of event.</td>
<td>1 or 2</td>
<td>N/A</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Time from event 1 to 2</td>
<td>0 to 5.0 sec</td>
<td>0.1 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>Complete file recorded</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No</td>
</tr>
</tbody>
</table>

Accuracy requirement only applies within the range of the physical sensor. If measurements captured by a sensor exceed the design range of the sensor, the reported element shall indicate when the measurement first exceeded the design range of the sensor.

5.2.4 Acceleration Time-History data and format: the longitudinal, lateral, and normal acceleration time-history data, as applicable, shall be filtered either during the recording phase or during the data downloading phase to include:

5.2.4.1 The Time Step (TS) that is the inverse of the sampling frequency of the acceleration data and which has units of seconds;

5.2.4.2 The number of the first point (NFP), which is an integer that when multiplied by the TS equals the time relative to time zero of the first acceleration data point;

5.2.4.3 The number of the last point (NLP), which is an integer that when multiplied by the TS equals the time relative to time zero of the last acceleration data point; and

5.2.4.4 NLP—NFP + 1 acceleration values sequentially beginning with the acceleration at time NFP * TS and continue sampling the acceleration at TS increments in time until the time NLP * TS is reached.

5.3 Data capture
The EDR shall store the captured data in the vehicle.

The EDR shall capture and record the data elements for events in accordance with the following conditions and circumstances:

§3.1 In a frontal air bag deployment crash event, capture and record the current deployment data. To a side or side curtain/tube air bag deployment crash, where lateral delta-Y is recorded by the EDR, capture and record the current deployment data. The memory for the air bag deployment event shall be locked to prevent any future overwriting of the data.

§3.2 In an event that does not meet the criteria in paragraph 3.3.1, capture and record the current event data, up to three events, subject to the following conditions: [To be discussed in the group. I am not sure if this meets the expectations of covering also non-airbag deployment events.]

5.3.2.1 If an EDR non-volatile memory buffer void of previous-event data is available, the current event data is recorded in the buffer.

§3.2.2 If an EDR non-volatile memory buffer void of previous-event data is not available, the manufacturer may choose to either shall overrite any previous event data that does not deploy an air bag, according to the priorities of 5.3.2.4 with the current event data, with the oldest data being erased first, or do not record the current event data.

5.3.2.3 EDR buffers containing previous frontal, side, or side curtain/tube air bag deployment-event data shall not be overwritten by the current event data.

5.3.2.4 Prioritisation (subject to requirements of national and regional law) of event data is:
 a) Airbag deployment
 b) Front, side, or rear impact event
 c) Pedestrian protection system deployment
 d) Rollover event
 e) Active safety system
 f) Vehicle stop event

5.4 Data survivability

5.4.1 The data shall be retrievable by the methodology specified by the vehicle manufacturer under paragraph 5.5 for not less than 10 days after the test, and the complete data recorded element shall read "yes" after the test.

5.4.2 When a vehicle is equipped with an over the air (OTA) interface, the following shall apply as appropriate:

 5.4.2.1 The EDR shall be fitted with an embedded hardware, allowing authentication on and access to an over the air (OTA) interface.

 5.4.2.2 The system must be able to recognize when a data transmission to the independent backend is successfully completed.
5.4.3 After the end of an event, described in paragraph 5.1, the EDR shall send a dataset of the respective event to the independent server over an end-to-end protected wireless connection.

5.4.4 If the sending of data failed or is not possible, then the EDR shall retry sending the data, if a secure and active wireless connection is available.

5.4.5 Notwithstanding paragraph 5.4.1, stored data in the EDR shall be deleted after the first sale of the motor vehicle for purposes other than resale, unless the requirements of national or regional laws of the Parties, not later than 90 days after the first sale of the motor vehicle for purposes other than resale.

5.5 Data retrieval tools

Each manufacturer of a motor vehicle equipped with an EDR shall ensure by licensing agreement or other means that a tool(s) is commercially available that is capable of accessing and retrieving the data stored in the EDR that are required by this Part. The tool(s) shall be commercially available not later than 90 days after the first sale of the motor vehicle for purposes other than resale.

Each manufacturer of a motor vehicle equipped with an EDR shall ensure, that the data stored in the EDR that are required are retrievable in line with the requirements of national or regional laws of the Parties, not later than 90 days after the first sale of the motor vehicle for purposes other than resale.

Each manufacturer shall also provide an information package to authorized parties that includes the information on how to grant access and retrieve the data stored in the EDR.

5.6 System deactivation

It shall not be possible to deactivate the EDR.

5.7 Malfunction

5.7.1 The vehicle shall be equipped with a tell-tale that provides a warning to the driver of the occurrence of any malfunction affecting the storage of data elements, the sensing of a trigger or the generation or transmission of control or response signals in the EDR.

5.7.2 The EDR malfunction tell-tale shall be identified by the symbol shown for “EDR Malfunction Tell-tale” below or by the text “EDR”

5.7.3 It may be cancelled temporarily but shall be repeated whenever the ignition or the vehicle master control switch is activated (whichever is applicable).

6. Test procedure

6.1 Crash Test performance and survivability

6.1.1 Occupant protection tests

Commented [AE54]: FSD 02-12
Commented [AE55]: FSD 02-12
Commented [AE56]: FSD 02-12
Commented [AE57]: FSD 02-12 suggestion: Authorized parties shall be able to retrieve stored data with a generic scan-tool via the electronic vehicle interface from the EDR or through an independent backend (if provided). For the purpose of type approval, it shall be possible for Type Approval Authorities and Technical Services to access and read data via an electronic vehicle interface. At roadworthiness testing, including the periodic technical inspection, it shall be possible for responsible authorities to access and read a manually triggered test data set via an electronic vehicle interface to test the storage functionality and plausibility of the data set.

EC: response to the above is that all of this should be defined by National law.

Commented [AE58]: FSD 02-12
EC: agree
Commented [AE59]: FSD 02-12
EC: agree
Commented [AE60]: FSD 02-12
EC: agree

Commented [AE61]: EC: hoping to avoid this by implementing tests already defined elsewhere.

Commented [AE62]: EC: added some sections to help organise the text.
6.1.1 Each vehicle subject to the requirements of national and regional frontal crash test regulations shall conform with the specifications in paragraph 6.1.1.3.

6.1.2 Each vehicle subject to the requirements of national and regional side impact crash test regulations, that meets a trigger threshold or has a frontal air bag deployment, shall conform with the specifications of paragraph 6.1.1.3.

6.1.3 The data elements required by paragraph 5.2, except for the "Engine throttle percent full," "engine RPM," and "service brake, on/off," shall be recorded in the format specified by paragraph 5.2, and exist at the completion of the crash test.

6.1.4 Pedestrian protection tests

6.1.4.1 Each vehicle subject to the requirements of UNECE Regulation 127 or similar national or regional pedestrian protection test regulations, shall record the data elements required by paragraph 5.2 in the format specified by paragraph 5.2 and exist at the completion of the test. This only applies for vehicles fitted with an active pedestrian protection system that would deploy during the test.

6.1.4.2 If the vehicle is equipped with an active pedestrian protection system that will not be triggered during the UNECE Regulation 127 test, then these may be tested using a methodology agreed with the Technical Service. Either:
 a) by use of a simulated input of a trigger signal to the vehicle
 b) by use of a simulated input of a trigger signal to the EDR on a test bench
 c) testing evidence provided by the manufacturer
 d) testing according to Annex 5;

6.1.4.3 If the vehicle is not equipped with an active pedestrian protection system then it shall be tested according to Annex 5.

6.1.5 Active safety system tests

6.1.5.1 Each vehicle equipped with an active safety system that is defined in Regulation shall record the data elements required by paragraph 5.2 in the format specified by paragraph 5.2 and exist at the completion of the test.

6.1.5.2 The relevant regulation tests are:
 • UNECE Regulation No. 140 Electronic Stability Control (ESC)
 • UNECE Regulation No. 141 Tyre Pressure Monitoring Systems (TPMS)
 • UNECE Regulation No. 144 Accident Emergency Call Systems (eCall)
 • UNECE Regulation No. 152 Autonomous Emergency Braking System (AEBs)
 • UNECE Regulation No. XXX Automated Lane Keeping Systems (ALKS)
6.1.3.3 The EDR data shall be verified after performing up to two of the regulatory tests as selected by the test authority.

6.1.3.4 If the vehicle is equipped with active safety systems that are not yet regulated at international or national level, then these may be tested using a methodology agreed with the Technical Service, either:
 a) using a test manœuvre designed to stimulate activation of the system
 b) by use of a simulated input of a trigger signal to the vehicle
 c) by use of a simulated input of a trigger signal to the EDR on a test bench.

7. **Modification of vehicle type and extension of approval**

7.1. Every modification of the vehicle type as defined in paragraph 2.2. of this Regulation shall be notified to the Type Approval Authority which approved the vehicle type. The Type Approval Authority may then either:

7.1.1. Consider that the modifications made do not have an adverse effect on the conditions of the granting of the approval and grant an extension of approval;

7.1.2. Consider that the modifications made affect the conditions of the granting of the approval and require further tests or additional checks before granting an extension of approval.

7.2. Confirmation or refusal of approval, specifying the alterations, shall be communicated by the procedure specified in paragraph 4.3. above to the Contracting Parties to the Agreement applying this Regulation.

7.3. The Type Approval Authority shall inform the other Contracting Parties of the extension by means of the communication form which appears in Annex 1 to this Regulation. It shall assign a serial number to each extension, to be known as the extension number.

8. **Conformity of production**

8.1. Procedures for the conformity of production shall conform to the general provisions defined in Article 2 and Schedule 1 to the Agreement (E/ECE/TRANS/505/Rev.3) and meet the following requirements:

8.2. A vehicle approved pursuant to this Regulation shall be so manufactured as to conform to the type approved by meeting the requirements of paragraph 5. above;

8.3. The Type Approval Authority which has granted the approval may at any time verify the conformity of control methods applicable to each production unit. The normal frequency of such inspections shall be once every two years.
9. Penalties for non-conformity of production

9.1. The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirements laid down in paragraph 8. above are not complied with.

9.2. If a Contracting Party withdraws an approval it had previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation by sending them a communication form conforming to the model in Annex 1 to this Regulation.

10. Production definitively discontinued

If the holder of the approval completely ceases to manufacture a type of vehicle approved in accordance with this Regulation, he shall so inform the Type Approval Authority which granted the approval, which in turn shall forthwith inform the other Contracting Parties to the Agreement applying this Regulation by means of a communication form conforming to the model in Annex 1 to this Regulation.

11. Names and addresses of the Technical Services responsible for conducting approval tests and of Type Approval Authorities

The Contracting Parties to the Agreement applying this Regulation shall communicate to the United Nations Secretariat the names and addresses of the Technical Services responsible for conducting approval tests and of the Type Approval Authorities which grant approval and to which forms certifying approval or extension or refusal or withdrawal of approval are to be sent.
Annex 1

Communication

(Maximum format: A4 (210 x 297 mm)

issued by: (Name of administration)

...

...

1 Concerning: 1 Approval granted
Approval extended
Approval refused
Approval withdrawn
Production definitively discontinued

of a type of vehicle with regard to the Event Data Recorder (EDR) pursuant to UN Regulation No. XXX

Approval No: ..

1. Trademark: ..

2. Type and trade name(s): ..

3. Name and address of manufacturer: ..

4. If applicable, name and address of manufacturer’s representative:

5. Brief description of vehicle: ..

6. Date of submission of vehicle for approval: ..

7. Technical Service performing the approval tests: ..

8. Date of report issued by that Service: ...

9. Number of report issued by that Service: ...

10. Reason(s) for extension (if applicable): ..

11. Approval granted/refused/extended/withdrawn: ..

12. Place: ..

13. Date: ..

14. Signature: ...

15. The list of documents deposited with the Type Approval Authority which has granted approval is annexed to this communication.

1 Distinguishing number of the country which has granted/extended/refused/withdrawn an approval (see approval provisions in this Regulation).

2 Strike out what does not apply.
Annex 2

Information document on the type approval of a type of vehicle with regard to the Event Dara Recorder (EDR)

The following information, if applicable, shall be supplied in triplicate and shall include a list of contents.

Any drawings shall be supplied in appropriate scale and in sufficient detail on size A4 paper or on a folder of A4 format.

Photographs, if any, shall show sufficient detail.

General
1. Make (trade name of manufacturer):
2. Type and general commercial description(s):
3. Means of identification of type, if marked on the vehicle:
4. Location of the marking:
5. Location of and method of affixing the approval mark:
6. Category of vehicle:
7. Name and address of manufacturer:
8. Address(es) of assembly plant(s):
9. Photograph(s) and/or drawing(s) of a representative vehicle:
10. EDR
 10.1. Make (trade name of manufacturer):
 10.2. Type and general commercial description(s):
 10.3. Drawing(s) or photographs showing the location and method of attachment of the EDR in the vehicle:
 10.4. Description of the triggering parameter:
 10.5. Description of any other relevant parameter (storing capacity, resistance to high deceleration and mechanical stress of a severe impact, etc.):
 10.6. The data and data format stored in the EDR:
 10.7. Instructions for retrieving data from the EDR:
Annex 3

Arrangements of approval marks

(see paragraphs 4.5. to 4.5.2. of this Regulation)

The above approval mark affixed to a vehicle shows that the vehicle type concerned has been approved in Germany (E1) with regard to the EDR pursuant to UN Regulation No. XXX. The first two digits of the approval number indicate that the approval was granted in accordance with the requirements of UN Regulation No. XXX in its original form.

The above Unique Identifier shows that the type concerned has been approved and that the relevant information on that type-approval can be accessed on the UN secure internet database by using 270650 as Unique Identifier. Any leading zeroes in the Unique Identifier may be omitted in the approval marking.
Annex 4

Data elements

...