Additional information:

(FT)

wurd case (wc) vehicle		hest care (bc) vehicle	
	193,8	FD kc N	132,3
F1 we Nikmin	0,292	F1 kc/Njkmbj	0,293
F2 wc[Njkm/h]	0,03015	F2 bc/Mikmini"	0,02736
	1703	TNL kaj	1553
CO2 we Low [gkm]	169,5	CO2 la Low [glan]	156,7
CO2 we Mid Jakad	131,4	CO2 to Nh Jakanj	116,6
CO2 we High [gkm]	116,7	CO2 ke Hah jakai	101,6
CO2 we Ed-ligh (glan)	139,0	CO2 ke Ed-lah (ajkai)	121,5
CO2 we WLTC [akad	134,6	CO2 le VIIC (akai	119,1

	<u>Optional equipment, example</u>				
		weight (kap)	Rift (km/lf)		antinto car
	1.6 wheel kasis		8,4		
	17 wheels im 1	10	9,8	0,010	
	17 wheels in 2	5	9,8	0,020	х
	1B wheels	10	11.3	0,044	
	design parkage	5		0,011	Х
	glass mul	15			Х
	marrage real	60			
	Treat	60		0,010	
				1	
	STATE OF THE OF	150		0,065	
	Østa uz-be	150		0,066	
74	na annoach	0		0,001	
	su approaci				CO2-value:
	Saladari car	25	9,8	0,031	124,5
5	0012				
12	Stand And a structure and a	lower	URBEI	average	
_	Ólyme 1 / A		6.4	5.9	

Drafting group on the 'Combined appro

	coco ron	ort tor tho		AATINA L	LIDA	0112			
	essiep		C/ 8.4	leeding 2.	JUIN	Cite And ANG of worst class.	licert	Upper	-average
22555D R 17	9,8 🧄	C / 8.5	C/8.9	E/ 10.0 📃		(Chass 1 / A		6,4	5,9
22545 R18	11,3	F7 11.7				Chass 2/B	6,5	7,6	7,1
						(Chass 3 / C	7,7	8,9	8,4
tyre used for RLD	measured Rift	best-turefi(RLD) kn/i				Çinas 4/E	9,0	10,4	9,8
	mersma	(T&F)			_	Chass 5/F	10,5	11,9	11,3
22545 R18	11,7	F/11.7				Charge 6 / 6	12,0		12,9

Daniel unst 2 Chan H

Step 3. divid CracLueginger: (BMW)

Daig FD rawn Daig F1 raynya rife	ucht and	M. Bergm	an (Audi)
Data mbri Data Coz LWntaC (pleman (VW)	
Daia 632 Malatan Daia 632 Kubintan Daia 632 Balaha	yama (H	onda)	
Bria 682 WIIC phri B. Me	rcier ^{15,6} (PS	SA)	
Regression			
21)	410	63	
30	910	R4	
40	11810	116	
£1)	2811)	68	

71

TETT

Physe		Dixt. [n]	Time cum Ja	Dixt. aum. (ni
	589	3095	589	3095
MIN	433	4755	1022	7850
High	455	7162	1477	15012
	323	8254	1800	23266
WITC	1800	23266	1800	23266

Tasks for the drafting group

- Work out a detailed methodology to calculate/interpolate CO₂ for individual vehicles between a best-case and a worst-case vehicle
- Check the feasibility to interpolate vehicle parameters: mass, tyre rolling resistance (RR) and aerodynamic options
- Evaluate the accuracy of the methodology
- Transpose the methodology into the GTR (including relevant definitions)

Outline of the calculation method

CO₂ results from 2 road load determination tests (worst-case and best-case mass, rolling resistance and aerodynamics) yields:

 ΔCO_2 , ΔF_0 , ΔF_2 , Δm ,

Calculate delta energy demand ΔE_{cycle} from target speed and road load coefficients :

For individual vehicles $\Delta E_{cycle,ind}$ is calculated based on Δm_{ind} , ΔRR_{ind} and $\Delta Cd.A_{ind}$ Assume for individual vehicles ΔCO_2 to be proportional to ΔE_{cycle}

 \Rightarrow engine efficiency is relatively constant for small ΔE variations (Willans lines)

Interpolation method

Current state of play

- 5 tele/web meetings held since 27 February 2013
- Good progress due to efforts by all team members
- Main calculation/interpolation methodology is agreed
- Outputs:
 - Step by step description of the methodology (see document WLTP-DTP-LabProcICE-211)
 - Excel sheet with the calculation/interpolation procedure (see document WLTP-DTP-LabProcICE-212)
 - GTR text proposal: first draft just completed (not issued yet)
- Main open issues resolved
- Recent decision: interpolation is based on 2 measurements (worst-case and best-case vehicle)
- Work of the task force is near completion

Example: Simulation results by Audi

- Standard B-class vehicle with 4-cyl. gasoline engine and autom. transmission
- TM_L: 1568 kg; TM_H 1678 kg
- Difference in cd*A: 0,0315 m²
- Rolling Resistance min: 7,2 kg/t; max: 10,5 kg/t
- Range of 15 g/km CO₂ between worst- and best case vehicle

Example: Simulation results by Audi

					ENERG Y [kJ]	CO2[g/km] Simulation	CO2 [g/km] Interpolation by energy	⊿CO2
		WEIGH	∆aero (m	RR (kg/t	Total	Total	Total	Total
1	BASE	1568	0	7.2	10807	155.4	155.4	0.0
2	1+RR	1568	0	10.5	11700	163.9	163.7	0.2
3	2+Weight	1678	0	10.5	12221	168.6	168.5	0.1
4	3+Aero	1678	0.0315	10.5	12420	170.4	170.4	0.0
5	1+Weight	1678	0	7.2	11269	159.4	159.7	-0.3
6	1+Aero	1568	0.0315	7.2	11004	157.1	157.2	-0.1
7	5+Aero	1678	0.0315	7.2	11465	161.1	161.5	-0.4
8	2+Aero	1568	0.0315	10.5	11900	165.7	165.5	0.2
	ind	1604	0.0079	8.2	11283	159.7	159.8	-0.1

- Range of 15 g/km CO₂ between worst- and best case vehicle
- Maximum deviation between the simulation and the interpolated values is less than 0.5 g/km (standard gasoline engine).
- Deviations are lower for individual vehicles.

Final steps

- Discuss the draft GTR text on the combined approach
- Address remaining details:
 - Vehicle family parameters
 - Definition of unladen mass
 - Allowable CO₂ interpolation range
 - Cycle downscaling
- Finish an agreed GTR text proposal before the summer