Downscaling Proposal

India Short validation results India Proposal

India Presentation 5th June, 18th DHC Meeting, Geneva.

Background

During the discussions in WLTP DHC Telecon on 16th May, 2013:

1. India confirmed Acceptability of Downscaling Principal with the consideration for:

a) taking care of vehicles which are not able to trace the cycle, andb) taking care of vehicles which show very high P_WOT operation

2. Based on above, a short validation was proposed by WLTP-DHC.

Action plan formulated:

- Validation of Downscaling Proposal and
- Possible solutions to alleviate the concerns raised by India

DownScaling Proposal- Validation Summary

Sno	Class	Vehicle	Fuel type	Steven Proposal	Test Results Remarks				
				Downscaling %	Traceability	Traceability Error Duration	% Time where Reqd power > 95% avail Power (EXH Phase)	Vmax, kmph	Rated RPM
								Cycle V Max	Cycle Max RPM
1		А	Diesel	5.6%	0	5 sec	4.2%		
								56	3096
2	Class I	В	Diesel	10.5%	Ο				
3		С	Diesel	12.3%	ο	0 sec		70	3200
Ľ								64	3118
		D	Diesel	3.1%	Ο		3%		
-								121.17	3158
E		E Gasoline 23% O 0 sec 40.0%	Casalina	220/	0	0.000	40.0%	110	5000
5			40.0%	107.7	5346				
		F	Gasoline	0%	x	14 sec	11.8%	135	6000
0	5							131.3	6790
7		G	G CNG	7.9%	X	45 sec	23.8%	135	6000
								125.6	6954
		н	Gasolino	0%	0	1 500	2%	160	5000
				Casoline	070	•	- 350	2 /0	131.3

<u>Traceability</u>					
X	Not Ok				
0	ОК				

Class I : Vehicle Validation Results

Observations on the WLTC Cycle Down scaling software tool

1. <u>Class I</u> :

- a) Once Class I cycle is selected, %Downscaling drop box selection becomes inactive in software tool provided.
- b) Some times the tool doesn't work if you would like to work for the same data file.
- c) Class-1 cycle generated with the coast down values show the truncation in the cycle rather than shifting the cycle with the down scaling factor as it happens correctly for class-3.
- d) For the same vehicle when the down scaling is applied with the road coast down coefficients a & b, but , if we modify the polynomial interms of F = a + bV + cV2 the tool doesn't give the down scaling at all. Theoretically, it shall provide the same down scaling.

Example: Vehicle A:

Vehicle Road load coeff by coast down on road	Polynomial	Down scaling factor calculated
f0= 121.74, f2 = 0.11	$F = f0 + f2^*V^2$	12.3 %
f0= 138.6, f1 = 2.28, f2= 0.027	$F = f0 + f1^*V + f2^*V^2$	0%

Example: Down scaling Factor Calculated for Class-1 Vehicle A

Microsoft Access - [Calculate gearshifts for a single v	vehicle]					7 X
<u>File Edit View Insert Format Records To</u>	ols <u>W</u> indow <u>H</u> elp					
📴 <u>T</u> ask					Type a question for help 🔹	_ 8 ×
🔅 🐵 💿 🛛 🖸 🚮 🖏 Favorite <u>s</u> × 📴 🗸		-				
Tahoma 🔹	8 • B I U = = = 3 • I	A + 🦽 + 🔚 + 🖦 +				
				h the newer curve values		
			VIII VIII	ii the power curve values		
				Microsoft O		
The additional safety margin is fully	determine additional safety margin			Wilciosoft O		
applied at idling speed and then	0.0%	cycle part		This vehicl	e would require 5.6 per cent downscaling!	
		time in s				
the gear use calculation	Class 1 Vehicle A		_			
	,				<u> </u>	
	choose vehicle_no	You have to inse "check calcul	ert a case name and the ation settings" button in	en press the		- II
n min drive is the minimum engine	5	activate th	e "calculate gearshifts"	button		Ξ
speed during drive phases in gears > 2.	determine n min drive		case description			
minimum GTR draft 1494 min-1	1494		Class I ven A			
minimum absolut 1437.5 min-1	,	Check calc settings	Calculate gearshifts	Check for calculation		
class 1: pmr_kerb <= 22,	choose cycle					
class 2: 22 < pm_kerb < 34, class 3: pmr_kerb > 34	Class 1, Version 2	Check results	Check average n_norm	Export results to Excel		
		Check for Pmax <pres 1<="" td=""><td>Check for Pmax<pres 2<="" td=""><td>Check wot percentage</td><td></td><td></td></pres></td></pres>	Check for Pmax <pres 2<="" td=""><td>Check wot percentage</td><td></td><td></td></pres>	Check wot percentage		
		check v for Pres = Prated	Check Pres	Check n_norm > 120%		
	choose vehicle speed cap		Check for high revs			
	0.070					
	modify toot mass					
	nouny test mass					-
Record: 1 > > > of 1						
Form View					NUM	-25
		<u></u>			21% C A 🛛 🛱 🙄 🔰 28-05-	-2013

Downscaling – Class I

Downscaling leads to truncation of cycle similar to Capping. This needs correction similar to Class III Vehicle downscaling concept

Downscaling – Class I – Vehicle A Results

No drivability issues in L and M phases observed.

Example: Down scaling Factor Calculated for Class-1 Vehicle B

Downscaling – Class I – Vehicle B Results

No drivability issues in L and M phases observed.

Downscaling – Class I – Vehicle C Results

Class 1 Vehicle under Short Validation with Down Scaling Tool (M Phase)

No drivability issues in L and M phases observed.

Class II : Vehicle Validation Results

Example: Down scaling Factor Calculated for Class-2 Vehicle D

Downscaling – Class II – Vehicle D Results (Diesel Vehicle)

No drivability issues observed (Diesel Vehicle).

Test Results : Vehicle E - Class II (Gasoline Vehicle)

Vehicle E: Gasoline Class II – EXH Phase

Class III : Vehicle Validation Results

Concerns with the New Tool

A) <u>N norm max</u>: Set Value 120% in new tool, which leads to very high Engine RPM's, Engine hitting the rev limiter, resulting in errors

Vehicle F Gasoline Class III – EXH Phase

- This is not a natural driving behavior!
- This Results in driving error from target
- o Creates artificial downscaling requirements

Proposal: N-Norm max set value of 90% as in previous tool should be used

Comparison of N norm max =120% and 90% - Vehicle F Class III

Vehicle F : N_norm_max =90% Vehicle F : N_norm_max =120% Vehicle Speed(kmph) Vehicle Speed(kmph) Engine Speed -1000 -1000 Target Speed — Actual Speed — Engine RPM ActualSpeed — Target Speed — Engine RPM -3000 -3000 -50 -5000 -50 -5000 Time(sec) Time(sec) 110 110 105 Vehicle Speed(kmph) Vehicle ActualSpeed Target Speed Target Speed — Actual Speed — Min Speed — Min Speed -Max SPeed Time(sec) Time(sec)

1. With N_norm_max=120% Engine RPM in cycle reaches maximum permissible limit.

2. Fuel Cut results in sudden power loss and deviation from targeted trace, whereas with 90 % n_norm_max vehicle follows the trace . With 120%, artificial downscaling requirements get created

Comparison of N norm max =120% and 90% - Vehicle G Class III

- 1. With N_norm_max=120% Engine RPM in cycle reaches maximum permissible limit
- 2. Fuel Cut results in sudden power loss and deviation from targeted trace, whereas with 90 % n_norm_max vehicle follows the trace.

Concerns with the New Tool

B. R max : $r_0 > 1$ for downscaling applicability.

This means that demand power should be higher than engine rated power

Downscaling proposal

- The downscaling factor f_{dsc} is calculated using the following equation:
- $f_{dsc} = 0$, if $r_{max} < r_0$
- $a_1^* r_{max} + b_1$, if $r_{max} \ge r_0$
- The calculation parameter/coefficients r₀, a₁ and b₁ are as follows:.
- r₀ = 1.053, a₁ = 0.54, b₁ = -0.5385 for class 1
- • $r_0 = 1.022$, $a_1 = 0.532$, $b_1 = -0.5133$ for class 2
- • $r_0 = 1.024$, $a_1 = 0.63$, $b_1 = -0.615$ for class 3.
- The r_0 values are chosen so that the downscaling starts with $f_{dsc} = 3\%$.

 \mathbf{r}_{\max} is calculated using the following equation:

$$\mathbf{r}_{\text{max}} = \mathbf{P}_{\text{req, max,i}} / \mathbf{P}_{\text{rated}}$$

Downscaling will be required if Preq,max,i is higher than Prated, with a margin

Class	ro
Class I	1.053
Class II	1.022
Class III	1.024

Concerns with the New Tool

B. R max : $r_0 > 1$ for downscaling applicability.

This means that demand power should be higher than engine rated power

Downscaling will be required if Preq, max, i is higher than Prated, with a margin

Proposal 1– Considering operation times> 90% of available Power

Normal running of vehicles as per road data collected shows near WOT operation < 2%

Considering vehicle running above 90% of available power for ~5% time in EXH phase

Proposal: May give some undue advantage to some vehicles (dropped). EXH operations with required power >90% of available power for 5% of times is equivalent to around 3~4% on overall cycle

Proposal 2– Considering operation times> 95% of available Power

In order to rationalize further, operation times only above 95% of available power were considered. Criteria was to limit these conditions to 5% of operation times in EXH phase

Proposal: Looks reasonable. EXH operations with required power >95% of available power for 5% of times is equivalent to around **2%** on overall cycle.

Proposal 3– Considering operation times> 95% of available Power

In order to rationalize even further, criteria was changed from 5% to 10% of operation times in EXH phase

Proposal: Will be a worst case criteria for real borderline vehicles. EXH operations with required power >95% of available power for 10% of times is equivalent to around 3% on overall cycle.

Steven Proposal vs Proposal 2 & 3

Parameter Down- Scaling factor	Vehicle F G X1 X2	Steven-Proposal 0% 7.90% 10.20% 0%	Proposal 2 (EXH P_WOT 5%) 4.37% 17.17% 19.38% 0.00%	Proposal 3 (EXH P_WOT 10%) 2.38% 13.92% 15.91% 0.00%
WOT Operation EXH Phase	F G X1 X2	5.60% 15.50% 27.90% 4.00%	6.8% 3.1% 10.2% 4.00%	7.1% 7.7% 16.1% 4.00%
WOT Operation Cycle	F G X1 X2	1.60% 4.60% 6.1% 0.70%	1.8% 2.1% 2.9% 0.70%	1.9% 3.1% 3.9% 0.70%
Max Cycle Speed Kmph	F G X1 X2	131.3 125.6 122.4 131.3	128.1 119.0 117.4 131.3	129.6 121.3 119.8 131.3

Based on short validation for downscaling tool, India recommends Proposal 3 for Class III Vehicles. This change does not affect vehicles \geq 1.0L Engine capacities.

Summary of India's Proposal

- 1) N-Norm_max criteria need to be reverted from 120% back to 90% (original value) to avoid unnatural driving conditions and align with real life driving
- 2) Based on short validation for downscaling tool, India recommends Proposal 3 for Class III Vehicles (considering 10% WOT operation in EXH Phase and approximately 3% in overall cycle time).
- 3) Similar criteria to be applied for Class II Vehicles
- 4) Class I downscaling shows truncation of cycle speed instead of downscaling of cycle. Needs uniformity of concept similar to Class III

Thank You for Your Attention